Motion equation for starting speed = V (m/s)
##y = \frac 1 B tan(ABx + arctan (V B))##
y = (1/B) * tan(A*B*x + arctan (V * B))
Constant dependence from Cd an Crr (S=surface of frontal area in m^2, m = mass in kg):
$$ A = -gC_r = -9.81 * C_r $$
$$ B = \sqrt {\frac { \rho S }{2mg}} \sqrt {\frac { C_d }{C_r}} =
\sqrt {\frac { 1.22 S }{2m*9.81}} \sqrt {\frac { C_d }{C_r}} =
\sqrt {\frac { 0.06218 S }{m}} \sqrt {\frac { C_d }{C_r}} =
0.24936 \sqrt {\frac {S}{m}} \sqrt {\frac { C_d }{C_r}} $$
## A = -9.81 C_r ##
## B = 0.24936 \sqrt {\frac {S}{m}} \sqrt {\frac { C_d }{C_r}} ##
For S=2,2 and m=1500:
##B = 0,0095 \sqrt {\frac { C_d }{C_r}} ## =~ ## \frac 1 {100} \sqrt {\frac { C_d }{C_r}} ##
A= -9.81 * R
B = 0.24936 * sqrt(S/m) * sqrt(D/R)
Values for A and B for typical values of Cd=0,3 and Crr=0,1, useful to have a starting point for manual Cd and Crr trimming:
$$ A = - 9.81 * 0,01 = -0.0981 $$
$$ B = 0.24936 \sqrt {\frac {S}{m}} \sqrt {\frac {0.3 }{0.01}} = 0.24936 * 5.477 * \sqrt {\frac {S}{m}} = 1.36574 * \sqrt {\frac {S}{m}}$$
##A = -0.0981 ##
##B = 1.36574 * \sqrt {\frac {S}{m}}##
S=2.2 , m= 1500:
A = -0.0981
B= 1.36574 * 0.03829 = 0.05230
Edge values:
Amin(Crr=0.005) = -2.943
Amax(Crr=0.03) = -0.04905
Bmin(Cd=0.1, Crr=0.03) = 0.24936 * sqrt(S/m) * sqrt(0.1/0.03) = 0.45527 * sqrt(S/m)
Bmax(Cd=0.5, Crr=0.005) = 0.24936 * sqrt(S/m) * sqrt(0.5/0.005) = 2.4936 * sqrt(S/m)
Bmin(Cd=0.1, Crr=0.03, m=1500, S=2,2) = 0.45527 * sqrt(S/m) = 0.45527 * 0.03829 = 0.017432
Bmax(Cd=0.5, Crr=0.005, m=1500, S=2,2) = 2.4936 * sqrt(S/m) = 2.4936 * 0.03829 = 0.09548
For above typical valuse for Cd and Crr, and for S=2,2 and m = 1500 and V = 19.44 m/s, the motion equation should be:
y = 19.218 * tan(atan(1.0115) -0.0051 *x )
Which looks like:
http://www4c.wolframalpha.com/Calculate/MSP/MSP23261h1fci5e6i8cg2850000569dhch2ch6cd3i6?MSPStoreType=image/gif&s=50&w=300.&h=178.&cdf=RangeControl
I also found, using
this site, this curve which appears to approximate experimental data very well as long Y is "far" from 0:
y=19.51343152 e^(-0.01576* x)
http://www3.wolframalpha.com/Calculate/MSP/MSP1046921i20h73a25fa9gf00001ehhfihae2i9fd12?MSPStoreType=image/gif&s=26&w=200.&h=85.&cdf=RangeControl
(don't know how to make similar sized charts)
Now I'll play a bit with charts.