Calculating Conditional Probabilities in Boolean Algebra

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
SUMMARY

This discussion focuses on calculating conditional probabilities in Boolean algebra, specifically comparing the probabilities of encountering individuals who have skied versus those who have flown. Given the data, 42% of the group has never skied, 58% has never flown, and 29% have both skied and flown. The calculations reveal that both conditional probabilities, P(S|¬F) and P(F|S), equal 50%, indicating that the likelihood of meeting someone who has skied from the group that has never flown is the same as finding someone who has flown from the group that has skied.

PREREQUISITES
  • Understanding of conditional probability
  • Familiarity with Boolean algebra concepts
  • Ability to interpret Venn diagrams
  • Knowledge of basic probability rules, including the sum rule
NEXT STEPS
  • Study the principles of conditional probability in depth
  • Learn how to construct and interpret Venn diagrams for probability problems
  • Explore the sum rule and its applications in probability theory
  • Investigate real-world applications of Boolean algebra in statistics
USEFUL FOR

Mathematicians, statisticians, students studying probability theory, and anyone interested in applying Boolean algebra to real-world scenarios.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking the following concering boolean algebra.

For a certain test group, it is found that $42\%$ of the people have never skied yet, that $58\%$ of them have never flown yet, and that $29\%$ of them have already flown and skied.
Which probability is higher then:
To meet someone, who has already skied, from the group of those who have never flown, or to find someone who has already flown from the group of those who have already skied?

I have done the following:

Let $S$ be the event that someone has already skied and let $F$ be the event that someone has already flown.
Then it is given that $P(\overline{S})=42\%$, $P(\overline{F})=58\%$ and $P(S\land F)=29\%$, or not? (Wondering)

From these probabilities, we get also $P(S)=100\%-P(\overline{S})=100\%-42\%=58\%$ and $P(F)=100\%-P(\overline{F})=100\%-58\%=42\%$.

We are looking for the conditional probabilities $P(S\mid \overline{F})$ and $P(F\mid S)$, or have I understood that wrong? (Wondering)

We have that \begin{align*}&P(S\mid \overline{F})=\frac{P(S\land \overline{F})}{P(\overline{F})} \\ &P(F\mid S)=\frac{P(F\land S)}{P(S)}=\frac{29\%}{58\%}=50\%\end{align*}

How can we calculate $P(S\land \overline{F})$ ? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Happy)

The easiest way is to make a Venn Diagram. Even if only to understand what we want to achieve.

The following Venn Diagram represents the problem doesn't it? (Thinking)
\begin{tikzpicture}
\begin{scope}[blend group = soft light]
\fill[red!30!white] (-1,0) circle (2);
\fill[blue!30!white] (1,0) circle (2);
\end{scope}
\node at (-1,2) {$S$};
\node at (1,2) {$F$};
\node at (-1.8,0) {$29\%$};
\node at (1.8,0) {$13\%$};
\node at (0,0) {$29\%$};
\end{tikzpicture}
We can immediately see that $P(S\land\bar F)=29\%$.

More formally, we have that $(S\land \bar F)$ and $(S\land F)$ have an empty intersection, and their union is $S$.
Therefore they are mutually exclusive and we can apply the sum rule:
$$P(S)=P\big((S\land F) \lor (S\land\bar F)\big) = P(S\land F) + P(S\land \bar F)
\implies P(S\land\bar F) = P(S)-P(S\land F)$$
This is effectively how the Venn Diagram was constructed in the first place. (Thinking)
 
Klaas van Aarsen said:
The following Venn Diagram represents the problem doesn't it? (Thinking)
\begin{tikzpicture}
\begin{scope}[blend group = soft light]
\fill[red!30!white] (-1,0) circle (2);
\fill[blue!30!white] (1,0) circle (2);
\end{scope}
\node at (-1,2) {$S$};
\node at (1,2) {$F$};
\node at (-1.8,0) {$29\%$};
\node at (1.8,0) {$13\%$};
\node at (0,0) {$29\%$};
\end{tikzpicture}

Ahh yes! (Malthe)
Klaas van Aarsen said:
More formally, we have that $(S\land \bar F)$ and $(S\land F)$ have an empty intersection, and their union is $S$.
Therefore they are mutually exclusive and we can apply the sum rule:
$$P(S)=P\big((S\land F) \lor (S\land\bar F)\big) = P(S\land F) + P(S\land\bar F)
\implies P(S\land\bar F) = P(S)-P(S\land\bar F)$$
This is effectively how the Venn Diagram was constructed in the first place. (Thinking)

Ahh ok, I see! So, we have that $$P(S\land\bar F) = P(S)-P(S\land F)=58\%-29\%=29\%$$

Therefore, the probability to meet someone, who has already skied, from the group of those who have never flown is equal to $$P(S\mid \overline{F})=\frac{P(S\land \overline{F})}{P(\overline{F})}=\frac{29\%}{58\%}=50\%$$ and the probability to find someone who has already flown from the group of those who have already skied is equal to $$P(F\mid S)=\frac{P(F\land S)}{P(S)}=\frac{29\%}{58\%}=50\%$$ So, these two probabilities are equal. Is everything correct? (Wondering)
 
It looks good to me. (Nod)
 
Klaas van Aarsen said:
It looks good to me. (Nod)

Great! Thanks a lot! (Yes)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 7 ·
Replies
7
Views
842
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K