Calculating Conditional Probabilities in Boolean Algebra

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary

Discussion Overview

The discussion revolves around calculating conditional probabilities within the context of Boolean algebra, specifically focusing on the probabilities of individuals having skied or flown based on given percentages. Participants explore the relationships between these events and seek to determine which conditional probability is higher.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant presents the problem and initial probabilities related to skiing and flying, questioning how to calculate the conditional probabilities.
  • Another participant suggests using a Venn Diagram to visualize the problem, asserting that it helps in understanding the relationships between the events.
  • Participants discuss the mutual exclusivity of certain events and apply the sum rule to derive the probability of skiing without flying.
  • There is a calculation of the conditional probabilities \(P(S \mid \overline{F})\) and \(P(F \mid S)\), with both being found to equal \(50\%\).
  • Some participants express agreement with the calculations presented, indicating that they find the reasoning and results satisfactory.

Areas of Agreement / Disagreement

Participants generally agree on the calculations and reasoning presented, but the discussion does not explicitly resolve whether the two conditional probabilities being equal is a definitive conclusion.

Contextual Notes

There are assumptions made regarding the independence and mutual exclusivity of events that are not fully explored or justified within the discussion.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking the following concering boolean algebra.

For a certain test group, it is found that $42\%$ of the people have never skied yet, that $58\%$ of them have never flown yet, and that $29\%$ of them have already flown and skied.
Which probability is higher then:
To meet someone, who has already skied, from the group of those who have never flown, or to find someone who has already flown from the group of those who have already skied?

I have done the following:

Let $S$ be the event that someone has already skied and let $F$ be the event that someone has already flown.
Then it is given that $P(\overline{S})=42\%$, $P(\overline{F})=58\%$ and $P(S\land F)=29\%$, or not? (Wondering)

From these probabilities, we get also $P(S)=100\%-P(\overline{S})=100\%-42\%=58\%$ and $P(F)=100\%-P(\overline{F})=100\%-58\%=42\%$.

We are looking for the conditional probabilities $P(S\mid \overline{F})$ and $P(F\mid S)$, or have I understood that wrong? (Wondering)

We have that \begin{align*}&P(S\mid \overline{F})=\frac{P(S\land \overline{F})}{P(\overline{F})} \\ &P(F\mid S)=\frac{P(F\land S)}{P(S)}=\frac{29\%}{58\%}=50\%\end{align*}

How can we calculate $P(S\land \overline{F})$ ? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Happy)

The easiest way is to make a Venn Diagram. Even if only to understand what we want to achieve.

The following Venn Diagram represents the problem doesn't it? (Thinking)
\begin{tikzpicture}
\begin{scope}[blend group = soft light]
\fill[red!30!white] (-1,0) circle (2);
\fill[blue!30!white] (1,0) circle (2);
\end{scope}
\node at (-1,2) {$S$};
\node at (1,2) {$F$};
\node at (-1.8,0) {$29\%$};
\node at (1.8,0) {$13\%$};
\node at (0,0) {$29\%$};
\end{tikzpicture}
We can immediately see that $P(S\land\bar F)=29\%$.

More formally, we have that $(S\land \bar F)$ and $(S\land F)$ have an empty intersection, and their union is $S$.
Therefore they are mutually exclusive and we can apply the sum rule:
$$P(S)=P\big((S\land F) \lor (S\land\bar F)\big) = P(S\land F) + P(S\land \bar F)
\implies P(S\land\bar F) = P(S)-P(S\land F)$$
This is effectively how the Venn Diagram was constructed in the first place. (Thinking)
 
Klaas van Aarsen said:
The following Venn Diagram represents the problem doesn't it? (Thinking)
\begin{tikzpicture}
\begin{scope}[blend group = soft light]
\fill[red!30!white] (-1,0) circle (2);
\fill[blue!30!white] (1,0) circle (2);
\end{scope}
\node at (-1,2) {$S$};
\node at (1,2) {$F$};
\node at (-1.8,0) {$29\%$};
\node at (1.8,0) {$13\%$};
\node at (0,0) {$29\%$};
\end{tikzpicture}

Ahh yes! (Malthe)
Klaas van Aarsen said:
More formally, we have that $(S\land \bar F)$ and $(S\land F)$ have an empty intersection, and their union is $S$.
Therefore they are mutually exclusive and we can apply the sum rule:
$$P(S)=P\big((S\land F) \lor (S\land\bar F)\big) = P(S\land F) + P(S\land\bar F)
\implies P(S\land\bar F) = P(S)-P(S\land\bar F)$$
This is effectively how the Venn Diagram was constructed in the first place. (Thinking)

Ahh ok, I see! So, we have that $$P(S\land\bar F) = P(S)-P(S\land F)=58\%-29\%=29\%$$

Therefore, the probability to meet someone, who has already skied, from the group of those who have never flown is equal to $$P(S\mid \overline{F})=\frac{P(S\land \overline{F})}{P(\overline{F})}=\frac{29\%}{58\%}=50\%$$ and the probability to find someone who has already flown from the group of those who have already skied is equal to $$P(F\mid S)=\frac{P(F\land S)}{P(S)}=\frac{29\%}{58\%}=50\%$$ So, these two probabilities are equal. Is everything correct? (Wondering)
 
It looks good to me. (Nod)
 
Klaas van Aarsen said:
It looks good to me. (Nod)

Great! Thanks a lot! (Yes)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 7 ·
Replies
7
Views
947
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K