Calculating constraint reactions

Andrea Vironda
Messages
69
Reaction score
3
TL;DR
Constraint reactions on a 6 pads system
I would be interested in calculating the constraint reactions on the 6 pads in yellow in the figure, about 300mm apart among them and loaded with F=12500 kN in blue. Since the system is highly hyperstatic, I don't know how to calculate the constraints. Can you give me a hand?

I've made a FEM calculation using Ansys Workbench v18. Do you think it's possible to read those data from there?
Schema RAM.jpg
 
Last edited by a moderator:
Engineering news on Phys.org
https://en.wikipedia.org/wiki/Statically_indeterminate#Mathematics said:
To solve statically indeterminate systems (determine the various moment and force reactions within it), one considers the material properties and compatibility in deformations.

But if one wants to assume that the forces are well distributed between the different constraints, one can lump the constraints together.

First, find the centroid of the six pads by averaging Xs and Ys to simulate a single reaction pad. The vertical reaction force on that pad will be ##F## and there will be a moment ##M## created to be in equilibrium.

Then draw a line from that pad to each pad. These are your lever arms and the reaction force to the moment for each pad will be perpendicular to these lever arms of length ##R_n## (where ##n## varies from ##1## to ##6##).

Now assume the vertical force and the moment reactions are distributed equally to each pad, thus each pad will have a reaction force that will be a vector composed of ##F/6## and ##M/6/R_n##.
 
Thanks, it helped me a lot
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 19 ·
Replies
19
Views
5K
Replies
2
Views
3K
Replies
5
Views
3K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K