MHB Calculating derivatives for various functions

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Derivatives
Click For Summary
The discussion focuses on calculating derivatives for various functions, with detailed calculations provided for each. The derivatives for functions involving exponential, logarithmic, and trigonometric components are correctly derived, confirming the formulas used. A specific inquiry about the derivative of the function \(f(x) = x^p\) leads to clarification that the formula holds for both natural and real numbers, particularly for \(p=0\) and \(p=1\). Edge cases at \(x=0\) are acknowledged but deemed irrelevant since the domain is restricted to \(x>0\). Overall, the calculations and discussions about derivatives are validated and clarified.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

I want to calculate the derivatives of the below functions.

1. $\displaystyle{f(x)=x^n\cdot a^x}$, $\in \mathbb{N}_0, x\in \mathbb{R},a>0$
2. $\displaystyle{f(x)=\log \left [\sqrt{1+\cos^2(x)}\right ]}$,$x\in \mathbb{R}$
3. $\displaystyle{f(x)=\sqrt{e^{\sin \sqrt{x}}}}$, $x>0$
4. $\displaystyle{f(x)=x^p}$, $x>0, p\in \mathbb{R}$
5. $\displaystyle{f(x)=\left (1-\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \sqrt{1+\tan^2(x)}\cdot \left (1+\sqrt{2}\sin \left (\frac{x}{2}\right )\right )}$, $x\in \left (-\frac{\pi}{2},\frac{\pi}{2}\right )$I have done the following:

Function 1:
The derivative is \begin{equation*}f'(x)=\left (x^n\cdot a^x\right )'=\left (x^n\right )'\cdot a^x+x^n\cdot\left ( a^x\right )'=nx^{n-1}\cdot a^x+x^n\cdot a^x\log a\end{equation*}Function 2:
The derivative is \begin{align*}f'(x)&=\left (\log \left [\sqrt{1+\cos^2(x)}\right ]\right )'=\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \left (\sqrt{1+\cos^2(x)}\right )' \\ & =\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \frac{1}{2\sqrt{1+\cos^2(x)}}\cdot \left (1+\cos^2(x)\right )' =\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \frac{1}{2\sqrt{1+\cos^2(x)}}\cdot 2\cos(x)\cdot \left (\cos (x)\right )' \\ &=\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \frac{1}{2\sqrt{1+\cos^2(x)}}\cdot 2\cos(x)\cdot \left (-\sin (x)\right )=-\frac{\cos (x)\cdot \sin (x)}{1+\cos^2(x)}\end{align*}Function 3:
The derivative is \begin{align*}f'(x)&=\left (\sqrt{e^{\sin \sqrt{x}}}\right )'=\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot \left (e^{\sin \sqrt{x}}\right )'=\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot e^{\sin \sqrt{x}}\cdot \left (\sin \sqrt{x}\right )'=\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot e^{\sin \sqrt{x}}\cdot \cos \sqrt{x} \cdot \left ( \sqrt{x}\right )' \\ & =\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot e^{\sin \sqrt{x}}\cdot \cos \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}=\frac{e^{\sin \sqrt{x}}\cdot \cos \sqrt{x}}{4\sqrt{x}\cdot \sqrt{e^{\sin \sqrt{x}}}}=\frac{\left (\sqrt{e^{\sin \sqrt{x}}}\right )^2\cdot \cos \sqrt{x}}{4\sqrt{x}\cdot \sqrt{e^{\sin \sqrt{x}}}}=\frac{\sqrt{e^{\sin \sqrt{x}}}\cdot \cos \sqrt{x}}{4\sqrt{x}} \end{align*}Function 4:
The derivative is \begin{equation*}f'(x)=\left (x^p\right )'=px^{p-1}\end{equation*}Function 5:
The function is equal to \begin{align*}f(x)&=\left (1-\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \sqrt{1+\tan^2(x)}\cdot \left (1+\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\\ & =\left (1-\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \left (1+\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \sqrt{1+\tan^2(x)}\\ & =\left (1^2-\left (\sqrt{2}\sin \left (\frac{x}{2}\right )\right )^2\right )\cdot \sqrt{1+\tan^2(x)}\\ & =\cos (x)\cdot \sqrt{1+\tan^2(x)}\\ & =\cos (x)\cdot \sqrt{1+\frac{\sin^2}{\cos^2}}\\ & =\cos (x)\cdot \sqrt{\frac{\cos^2(x)+\sin^2}{\cos^2}}\\ & =\cos (x)\cdot \sqrt{\frac{1}{\cos^2(x)}}\\ & =\cos (x)\cdot \frac{1}{\cos(x)}\\ & =1\end{align*}
So the derivative is \begin{equation*}f'(x)=\left (1\right )'=0 \end{equation*}
At function 4 it doesn't matter if $p$ is a natural number or a real number, it always like that the derivative, isn't it? For example if $p=\frac{1}{2}$ that formula holds.

:unsure:
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
At function 4 it doesn't matter if $p$ is a natural number or a real number, it always like that the derivative, isn't it? For example if $p=\frac{1}{2}$ that formula holds.
Hey mathmari!

What if $p=0$ or $p=1$? 🤔

The other derivatives look correct to me. (Nod)
 
Klaas van Aarsen said:
What if $p=0$ or $p=1$? 🤔

If $p=0$ then $f(x)=x^0=1$ and $f'(x)=0$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=0\cdot x^{0-1}=0$.
If $p=1$ then $f(x)=x^1=x$ and $f'(x)=1$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=1\cdot x^{1-1}=x^0=1$.

:unsure:
 
mathmari said:
If $p=0$ then $f(x)=x^0=1$ and $f'(x)=0$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=0\cdot x^{0-1}=0$.
If $p=1$ then $f(x)=x^1=x$ and $f'(x)=1$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=1\cdot x^{1-1}=x^0=1$.
These are 'special' at $x=0$. Note that $0\cdot x^{0-1}$ is not defined for $x=0$, but we do have that $(1)'=0$.
Additionally we run into $0^0$, which could be $0$, $1$, undefined, or something else.
So I think we should specify the behavior at $0$. 🤔

EDIT: Oh wait. (Wait)
I see now that it is given that $x>0$, in which case these edge cases do not apply.
 
Last edited:
Klaas van Aarsen said:
These are 'special' at $x=0$. Note that $0\cdot x^{0-1}$ is not defined for $x=0$, but we do have that $f'(0)=0$.
Additionally we run into $0^0$, which could be $0$, $1$, undefined, or something else.
So I think we should specify the behavior at $0$. 🤔

EDIT: Oh wait. (Wait)
I see now that it is given that $x>0$, in which case these edge cases do not apply.

So for $x>0$ the formula I wrote holds, or not? :unsure:
 
mathmari said:
So for $x>0$ the formula I wrote holds, or not?
Yep. (Nod)
 
Klaas van Aarsen said:
Yep. (Nod)

Great! Thank you! (Star)
 

Similar threads

Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
21
Views
2K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K