Calculating derivatives for various functions

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Derivatives
Click For Summary

Discussion Overview

The discussion revolves around calculating the derivatives of various mathematical functions, including polynomial, logarithmic, exponential, and trigonometric forms. Participants explore the application of derivative rules and address specific cases for different values of parameters.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents derivatives for five different functions, detailing the calculations for each.
  • There is a discussion about the derivative formula for the function \(f(x) = x^p\) and whether it holds for \(p\) being a natural number or a real number.
  • Another participant questions the behavior of the derivative when \(p = 0\) or \(p = 1\), providing calculations for these specific cases.
  • Concerns are raised about the undefined nature of \(0 \cdot x^{-1}\) at \(x = 0\) and the ambiguity of \(0^0\), although it is noted that the discussion is limited to \(x > 0\).
  • A later reply confirms that for \(x > 0\), the derivative formula presented holds true.

Areas of Agreement / Disagreement

Participants generally agree on the correctness of the derivatives presented, but there is some debate regarding the edge cases for specific values of \(p\) and the implications at \(x = 0\). The discussion remains unresolved regarding the broader implications of these edge cases, although it is noted that they do not apply under the given condition of \(x > 0\).

Contextual Notes

The discussion highlights limitations regarding the behavior of derivatives at specific points, particularly \(x = 0\), and the implications of undefined expressions in certain cases. However, the focus remains on \(x > 0\), which mitigates some of these concerns.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

I want to calculate the derivatives of the below functions.

1. $\displaystyle{f(x)=x^n\cdot a^x}$, $\in \mathbb{N}_0, x\in \mathbb{R},a>0$
2. $\displaystyle{f(x)=\log \left [\sqrt{1+\cos^2(x)}\right ]}$,$x\in \mathbb{R}$
3. $\displaystyle{f(x)=\sqrt{e^{\sin \sqrt{x}}}}$, $x>0$
4. $\displaystyle{f(x)=x^p}$, $x>0, p\in \mathbb{R}$
5. $\displaystyle{f(x)=\left (1-\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \sqrt{1+\tan^2(x)}\cdot \left (1+\sqrt{2}\sin \left (\frac{x}{2}\right )\right )}$, $x\in \left (-\frac{\pi}{2},\frac{\pi}{2}\right )$I have done the following:

Function 1:
The derivative is \begin{equation*}f'(x)=\left (x^n\cdot a^x\right )'=\left (x^n\right )'\cdot a^x+x^n\cdot\left ( a^x\right )'=nx^{n-1}\cdot a^x+x^n\cdot a^x\log a\end{equation*}Function 2:
The derivative is \begin{align*}f'(x)&=\left (\log \left [\sqrt{1+\cos^2(x)}\right ]\right )'=\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \left (\sqrt{1+\cos^2(x)}\right )' \\ & =\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \frac{1}{2\sqrt{1+\cos^2(x)}}\cdot \left (1+\cos^2(x)\right )' =\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \frac{1}{2\sqrt{1+\cos^2(x)}}\cdot 2\cos(x)\cdot \left (\cos (x)\right )' \\ &=\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \frac{1}{2\sqrt{1+\cos^2(x)}}\cdot 2\cos(x)\cdot \left (-\sin (x)\right )=-\frac{\cos (x)\cdot \sin (x)}{1+\cos^2(x)}\end{align*}Function 3:
The derivative is \begin{align*}f'(x)&=\left (\sqrt{e^{\sin \sqrt{x}}}\right )'=\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot \left (e^{\sin \sqrt{x}}\right )'=\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot e^{\sin \sqrt{x}}\cdot \left (\sin \sqrt{x}\right )'=\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot e^{\sin \sqrt{x}}\cdot \cos \sqrt{x} \cdot \left ( \sqrt{x}\right )' \\ & =\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot e^{\sin \sqrt{x}}\cdot \cos \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}=\frac{e^{\sin \sqrt{x}}\cdot \cos \sqrt{x}}{4\sqrt{x}\cdot \sqrt{e^{\sin \sqrt{x}}}}=\frac{\left (\sqrt{e^{\sin \sqrt{x}}}\right )^2\cdot \cos \sqrt{x}}{4\sqrt{x}\cdot \sqrt{e^{\sin \sqrt{x}}}}=\frac{\sqrt{e^{\sin \sqrt{x}}}\cdot \cos \sqrt{x}}{4\sqrt{x}} \end{align*}Function 4:
The derivative is \begin{equation*}f'(x)=\left (x^p\right )'=px^{p-1}\end{equation*}Function 5:
The function is equal to \begin{align*}f(x)&=\left (1-\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \sqrt{1+\tan^2(x)}\cdot \left (1+\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\\ & =\left (1-\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \left (1+\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \sqrt{1+\tan^2(x)}\\ & =\left (1^2-\left (\sqrt{2}\sin \left (\frac{x}{2}\right )\right )^2\right )\cdot \sqrt{1+\tan^2(x)}\\ & =\cos (x)\cdot \sqrt{1+\tan^2(x)}\\ & =\cos (x)\cdot \sqrt{1+\frac{\sin^2}{\cos^2}}\\ & =\cos (x)\cdot \sqrt{\frac{\cos^2(x)+\sin^2}{\cos^2}}\\ & =\cos (x)\cdot \sqrt{\frac{1}{\cos^2(x)}}\\ & =\cos (x)\cdot \frac{1}{\cos(x)}\\ & =1\end{align*}
So the derivative is \begin{equation*}f'(x)=\left (1\right )'=0 \end{equation*}
At function 4 it doesn't matter if $p$ is a natural number or a real number, it always like that the derivative, isn't it? For example if $p=\frac{1}{2}$ that formula holds.

:unsure:
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
At function 4 it doesn't matter if $p$ is a natural number or a real number, it always like that the derivative, isn't it? For example if $p=\frac{1}{2}$ that formula holds.
Hey mathmari!

What if $p=0$ or $p=1$? 🤔

The other derivatives look correct to me. (Nod)
 
Klaas van Aarsen said:
What if $p=0$ or $p=1$? 🤔

If $p=0$ then $f(x)=x^0=1$ and $f'(x)=0$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=0\cdot x^{0-1}=0$.
If $p=1$ then $f(x)=x^1=x$ and $f'(x)=1$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=1\cdot x^{1-1}=x^0=1$.

:unsure:
 
mathmari said:
If $p=0$ then $f(x)=x^0=1$ and $f'(x)=0$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=0\cdot x^{0-1}=0$.
If $p=1$ then $f(x)=x^1=x$ and $f'(x)=1$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=1\cdot x^{1-1}=x^0=1$.
These are 'special' at $x=0$. Note that $0\cdot x^{0-1}$ is not defined for $x=0$, but we do have that $(1)'=0$.
Additionally we run into $0^0$, which could be $0$, $1$, undefined, or something else.
So I think we should specify the behavior at $0$. 🤔

EDIT: Oh wait. (Wait)
I see now that it is given that $x>0$, in which case these edge cases do not apply.
 
Last edited:
Klaas van Aarsen said:
These are 'special' at $x=0$. Note that $0\cdot x^{0-1}$ is not defined for $x=0$, but we do have that $f'(0)=0$.
Additionally we run into $0^0$, which could be $0$, $1$, undefined, or something else.
So I think we should specify the behavior at $0$. 🤔

EDIT: Oh wait. (Wait)
I see now that it is given that $x>0$, in which case these edge cases do not apply.

So for $x>0$ the formula I wrote holds, or not? :unsure:
 
mathmari said:
So for $x>0$ the formula I wrote holds, or not?
Yep. (Nod)
 
Klaas van Aarsen said:
Yep. (Nod)

Great! Thank you! (Star)
 

Similar threads

Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
21
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
5
Views
2K