MHB Calculating Determinants of Matrices: A How-To Guide

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to calculate the determinant of the following matrices:
  1. $$A=\begin{pmatrix}-3 & -11 & -11 & 45 \\ 1 & 11 & 10 & -83 \\ 1 & -6 & -5 & 81 \\ 0 & -3 & -3 & 42\end{pmatrix}$$
  2. $$B=\begin{pmatrix}1+a_1 & a_2 & \ldots & a_n \\ a_1 & 1+a_2 & \ldots & a_n \\ \ldots & \ldots & \ldots & \ldots \\ a_1 & a_2 & \ldots & 1+a_n\end{pmatrix}$$
  3. $$C=(c_{ij})\in \mathbb{Q}^{n\times n} \text{ with } c_{ij}=\left\{\begin{matrix}
    0 & i=j\\
    1 & i\neq j
    \end{matrix}\right.$$

I have done the following:
  1. $$|A|=\begin{vmatrix}-3 & -11 & -11 & 45 \\ 1 & 11 & 10 & -83 \\ 1 & -6 & -5 & 81 \\ 0 & -3 & -3 & 42\end{vmatrix}=-3\begin{vmatrix} 11 & 10 & -83 \\ -6 & -5 & 81 \\ -3 & -3 & 42\end{vmatrix}-\begin{vmatrix} -11 & -11 & 45 \\ -6 & -5 & 81 \\ -3 & -3 & 42\end{vmatrix}+\begin{vmatrix} -11 & -11 & 45 \\ 11 & 10 & -83 \\ -3 & -3 & 42\end{vmatrix}-0\cdot \begin{vmatrix} -11 & -11 & 45 \\ 11 & 10 & -83 \\ -6 & -5 & 81 \end{vmatrix} =\ldots =42$$

Could you give me a hint how we could calculate the determinant of $B$ and $C$ ? (Wondering)
 
Physics news on Phys.org
You can use the third elementary row operation (it does not change the determinant) to make as many elements zero as possible in a certain column. For example, in problem 2 you can subtract the last row from all other rows. Then the matrix will become the identity matrix except for the last row and column. Then subtract from the last row the first row multiplied by $a_1$, the second row multiplied by $a_2$ and so on to eliminate all elements of the last row except the bottom right element.
 
Ah ok! So, we have the following:

2. $$|B|=\begin{vmatrix}1+a_1 & a_2 & \ldots & a_n \\ a_1 & 1+a_2 & \ldots & a_n \\ \ldots & \ldots & \ldots & \ldots \\ a_1 & a_2 & \ldots & 1+a_n\end{vmatrix}$$

By the row operation $R_i=R_i-R_n$ for each $i\in \{1, \ldots , n-1\}$ we get
$$|B|=\begin{vmatrix}1 & 0 & \ldots & -1 \\ 0 & 1 & \ldots & -1 \\ \ldots & \ldots & \ldots & \ldots \\ a_1 & a_2 & \ldots & 1+a_n\end{vmatrix}$$

By the row operation $R_n=R_n-a_1\cdot R_1-a_2\cdot R_2-\ldots -a_{n-1}\cdot R_{n-1}$ we get
$$|B|=\begin{vmatrix}1 & 0 & \ldots & -1 \\ 0 & 1 & \ldots & -1 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & 1+\sum_{i=0}^na_i\end{vmatrix}=\begin{vmatrix} 1 & \ldots & -1 \\ \ \ldots & \ldots & \ldots \\ 0 & \ldots & 1+\sum_{i=0}^na_i\end{vmatrix}= \ldots =\begin{vmatrix}1 & -1 \\ 0 &1+\sum_{i=0}^na_i\end{vmatrix}=1+\sum_{i=0}^na_i$$

Is this correct? (Wondering) 3. $$|C|=\begin{vmatrix}0 & 1 & \ldots & 1 \\ 1 & 0 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots \\ 1 & 1 & \ldots & 0\end{vmatrix}$$

By the row operation $R_1=R_1+R_2+\ldots +R_n$ we get
$$|C|=\begin{vmatrix}n-1 & n-1 & \ldots & n-1 \\ 1 & 0 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots \\ 1 & 1 & \ldots & 0\end{vmatrix}=(n-1)\begin{vmatrix}1 & 1 & \ldots & 1 \\ 1 & 0 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots \\ 1 & 1 & \ldots & 0\end{vmatrix}$$

By the row operation $R_i=R_i-R_1$ for $i\in \{2, \ldots , n\}$ we get
$$|C|=(n-1)\begin{vmatrix}1 & 1 & \ldots & 1 \\ 0 & -1 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & -1\end{vmatrix}=(n-1)\begin{vmatrix} -1 & \ldots & 0 \\ \ldots & \ldots & \ldots \\ 0 & \ldots & -1\end{vmatrix}=(n-1)(-1)^{n-1}\begin{vmatrix} 1 & \ldots & 0 \\ \ldots & \ldots & \ldots \\ 0 & \ldots & 1\end{vmatrix}=(n-1)(-1)^{n-1}|I_{n-1}|=(n-1)(-1)^{n-1}$$

Is this correct? (Wondering)
 
Suppose we have the matrix $A_n=(A_{ij})\in \mathbb{C}^{n\times n}$ with $a_{ij}=\left\{\begin{matrix}
1 , & i=j\\
-1 , & i=j-1\\
j^2, & i=j+1\\
0 , & \text{ otherwise}
\end{matrix}\right.$ for $1\leq i,j\leq n$.

I want to find the determinant using induction.

I have done the following:

To see the patern I have made some examples:

For $n=2$ we have the matrix $A_2=\begin{pmatrix}1& -1 \\ 1& 1\end{pmatrix}$. The determinant is $|A_2|=\begin{vmatrix}1& -1 \\ 1& 1\end{vmatrix}=2=n(n-1)$.

For $n=3$ we have the matrix $A_3=\begin{pmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{pmatrix}$. The determinant is $|A_3|=\begin{vmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{vmatrix} \ \ \overset{R_2=R_2-R_1}{ = } \ \ \begin{vmatrix}1& -1& 0 \\ 0 & 2 & -1 \\ 0 & 4 & 1\end{vmatrix}=\begin{vmatrix} 2 & -1 \\ 4 & 1\end{vmatrix}=2-(-4)=6=n(n-1)$. So, we want to prove that the determinant is $|A_n|=n(n-1)$, for $n\geq 2$, right? (Wondering) Induction on $n$.

Base case: For $n=2$, as shown above, it holds.

Inductive hypothesis: We suppose that it holds for $n=k$, i.e., $|A_k|=k(k-1)$.

Inductive step: We want to prove it for $n=k+1$, i.e., that it holds that $|A_{k+1}|=(k+1)k$. When we consider the matrix without the last row and without the last column, it is the matrix $A_k$.

But what is the relation between the determinant of $A_k$ and that of $A_{k+1}$ ? (Wondering)
 
I agree for problems 2 and 3 from post #1. For the problem about induction, you may want to create a new thread.
 
Evgeny.Makarov said:
I agree for problems 2 and 3 from post #1. For the problem about induction, you may want to create a new thread.

Ok, I will do that.

Thank you very much! (Smile)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top