Calculating Determinants of Matrices: A How-To Guide

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Determinants Matrices
Click For Summary

Discussion Overview

The discussion revolves around calculating the determinants of various matrices, including specific examples and general forms. Participants explore techniques for determinant calculation, including row operations and induction methods. The scope includes theoretical approaches and mathematical reasoning.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Post 1 presents matrices A, B, and C and asks for hints on calculating their determinants.
  • Post 2 suggests using elementary row operations to simplify matrix B for determinant calculation.
  • Post 3 provides a detailed calculation for the determinant of matrix B, arriving at a proposed result of \(1 + \sum_{i=0}^n a_i\), and also attempts to calculate the determinant of matrix C, suggesting it equals \((n-1)(-1)^{n-1}\).
  • Post 4 introduces a new matrix \(A_n\) and proposes using induction to find its determinant, providing examples for \(n=2\) and \(n=3\) to illustrate a pattern.
  • Post 5 and Post 6 express agreement on the calculations for matrices B and C but suggest that the induction discussion should be moved to a new thread.

Areas of Agreement / Disagreement

Participants generally agree on the approaches for calculating the determinants of matrices B and C, but the discussion about the induction method for matrix \(A_n\) remains unresolved, with no consensus on the relationship between the determinants of \(A_k\) and \(A_{k+1}\).

Contextual Notes

The discussion includes various assumptions about the properties of matrices and the validity of row operations, which are not fully explored or resolved. The calculations for determinants involve multiple steps that may depend on specific interpretations of the matrices involved.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to calculate the determinant of the following matrices:
  1. $$A=\begin{pmatrix}-3 & -11 & -11 & 45 \\ 1 & 11 & 10 & -83 \\ 1 & -6 & -5 & 81 \\ 0 & -3 & -3 & 42\end{pmatrix}$$
  2. $$B=\begin{pmatrix}1+a_1 & a_2 & \ldots & a_n \\ a_1 & 1+a_2 & \ldots & a_n \\ \ldots & \ldots & \ldots & \ldots \\ a_1 & a_2 & \ldots & 1+a_n\end{pmatrix}$$
  3. $$C=(c_{ij})\in \mathbb{Q}^{n\times n} \text{ with } c_{ij}=\left\{\begin{matrix}
    0 & i=j\\
    1 & i\neq j
    \end{matrix}\right.$$

I have done the following:
  1. $$|A|=\begin{vmatrix}-3 & -11 & -11 & 45 \\ 1 & 11 & 10 & -83 \\ 1 & -6 & -5 & 81 \\ 0 & -3 & -3 & 42\end{vmatrix}=-3\begin{vmatrix} 11 & 10 & -83 \\ -6 & -5 & 81 \\ -3 & -3 & 42\end{vmatrix}-\begin{vmatrix} -11 & -11 & 45 \\ -6 & -5 & 81 \\ -3 & -3 & 42\end{vmatrix}+\begin{vmatrix} -11 & -11 & 45 \\ 11 & 10 & -83 \\ -3 & -3 & 42\end{vmatrix}-0\cdot \begin{vmatrix} -11 & -11 & 45 \\ 11 & 10 & -83 \\ -6 & -5 & 81 \end{vmatrix} =\ldots =42$$

Could you give me a hint how we could calculate the determinant of $B$ and $C$ ? (Wondering)
 
Physics news on Phys.org
You can use the third elementary row operation (it does not change the determinant) to make as many elements zero as possible in a certain column. For example, in problem 2 you can subtract the last row from all other rows. Then the matrix will become the identity matrix except for the last row and column. Then subtract from the last row the first row multiplied by $a_1$, the second row multiplied by $a_2$ and so on to eliminate all elements of the last row except the bottom right element.
 
Ah ok! So, we have the following:

2. $$|B|=\begin{vmatrix}1+a_1 & a_2 & \ldots & a_n \\ a_1 & 1+a_2 & \ldots & a_n \\ \ldots & \ldots & \ldots & \ldots \\ a_1 & a_2 & \ldots & 1+a_n\end{vmatrix}$$

By the row operation $R_i=R_i-R_n$ for each $i\in \{1, \ldots , n-1\}$ we get
$$|B|=\begin{vmatrix}1 & 0 & \ldots & -1 \\ 0 & 1 & \ldots & -1 \\ \ldots & \ldots & \ldots & \ldots \\ a_1 & a_2 & \ldots & 1+a_n\end{vmatrix}$$

By the row operation $R_n=R_n-a_1\cdot R_1-a_2\cdot R_2-\ldots -a_{n-1}\cdot R_{n-1}$ we get
$$|B|=\begin{vmatrix}1 & 0 & \ldots & -1 \\ 0 & 1 & \ldots & -1 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & 1+\sum_{i=0}^na_i\end{vmatrix}=\begin{vmatrix} 1 & \ldots & -1 \\ \ \ldots & \ldots & \ldots \\ 0 & \ldots & 1+\sum_{i=0}^na_i\end{vmatrix}= \ldots =\begin{vmatrix}1 & -1 \\ 0 &1+\sum_{i=0}^na_i\end{vmatrix}=1+\sum_{i=0}^na_i$$

Is this correct? (Wondering) 3. $$|C|=\begin{vmatrix}0 & 1 & \ldots & 1 \\ 1 & 0 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots \\ 1 & 1 & \ldots & 0\end{vmatrix}$$

By the row operation $R_1=R_1+R_2+\ldots +R_n$ we get
$$|C|=\begin{vmatrix}n-1 & n-1 & \ldots & n-1 \\ 1 & 0 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots \\ 1 & 1 & \ldots & 0\end{vmatrix}=(n-1)\begin{vmatrix}1 & 1 & \ldots & 1 \\ 1 & 0 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots \\ 1 & 1 & \ldots & 0\end{vmatrix}$$

By the row operation $R_i=R_i-R_1$ for $i\in \{2, \ldots , n\}$ we get
$$|C|=(n-1)\begin{vmatrix}1 & 1 & \ldots & 1 \\ 0 & -1 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & -1\end{vmatrix}=(n-1)\begin{vmatrix} -1 & \ldots & 0 \\ \ldots & \ldots & \ldots \\ 0 & \ldots & -1\end{vmatrix}=(n-1)(-1)^{n-1}\begin{vmatrix} 1 & \ldots & 0 \\ \ldots & \ldots & \ldots \\ 0 & \ldots & 1\end{vmatrix}=(n-1)(-1)^{n-1}|I_{n-1}|=(n-1)(-1)^{n-1}$$

Is this correct? (Wondering)
 
Suppose we have the matrix $A_n=(A_{ij})\in \mathbb{C}^{n\times n}$ with $a_{ij}=\left\{\begin{matrix}
1 , & i=j\\
-1 , & i=j-1\\
j^2, & i=j+1\\
0 , & \text{ otherwise}
\end{matrix}\right.$ for $1\leq i,j\leq n$.

I want to find the determinant using induction.

I have done the following:

To see the patern I have made some examples:

For $n=2$ we have the matrix $A_2=\begin{pmatrix}1& -1 \\ 1& 1\end{pmatrix}$. The determinant is $|A_2|=\begin{vmatrix}1& -1 \\ 1& 1\end{vmatrix}=2=n(n-1)$.

For $n=3$ we have the matrix $A_3=\begin{pmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{pmatrix}$. The determinant is $|A_3|=\begin{vmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{vmatrix} \ \ \overset{R_2=R_2-R_1}{ = } \ \ \begin{vmatrix}1& -1& 0 \\ 0 & 2 & -1 \\ 0 & 4 & 1\end{vmatrix}=\begin{vmatrix} 2 & -1 \\ 4 & 1\end{vmatrix}=2-(-4)=6=n(n-1)$. So, we want to prove that the determinant is $|A_n|=n(n-1)$, for $n\geq 2$, right? (Wondering) Induction on $n$.

Base case: For $n=2$, as shown above, it holds.

Inductive hypothesis: We suppose that it holds for $n=k$, i.e., $|A_k|=k(k-1)$.

Inductive step: We want to prove it for $n=k+1$, i.e., that it holds that $|A_{k+1}|=(k+1)k$. When we consider the matrix without the last row and without the last column, it is the matrix $A_k$.

But what is the relation between the determinant of $A_k$ and that of $A_{k+1}$ ? (Wondering)
 
I agree for problems 2 and 3 from post #1. For the problem about induction, you may want to create a new thread.
 
Evgeny.Makarov said:
I agree for problems 2 and 3 from post #1. For the problem about induction, you may want to create a new thread.

Ok, I will do that.

Thank you very much! (Smile)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K