MHB Calculating Determinants of Matrices: A How-To Guide

Click For Summary
The discussion focuses on calculating the determinants of various matrices, specifically matrices A, B, and C. The determinant of matrix A is calculated to be 42 using cofactor expansion. For matrix B, the determinant is derived through row operations, resulting in the expression 1 + sum of elements a_i. The determinant of matrix C is calculated to be (n-1)(-1)^(n-1) using similar row operations. Additionally, there is a discussion on using induction to find the determinant of a specific matrix A_n, with initial examples provided for n=2 and n=3.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to calculate the determinant of the following matrices:
  1. $$A=\begin{pmatrix}-3 & -11 & -11 & 45 \\ 1 & 11 & 10 & -83 \\ 1 & -6 & -5 & 81 \\ 0 & -3 & -3 & 42\end{pmatrix}$$
  2. $$B=\begin{pmatrix}1+a_1 & a_2 & \ldots & a_n \\ a_1 & 1+a_2 & \ldots & a_n \\ \ldots & \ldots & \ldots & \ldots \\ a_1 & a_2 & \ldots & 1+a_n\end{pmatrix}$$
  3. $$C=(c_{ij})\in \mathbb{Q}^{n\times n} \text{ with } c_{ij}=\left\{\begin{matrix}
    0 & i=j\\
    1 & i\neq j
    \end{matrix}\right.$$

I have done the following:
  1. $$|A|=\begin{vmatrix}-3 & -11 & -11 & 45 \\ 1 & 11 & 10 & -83 \\ 1 & -6 & -5 & 81 \\ 0 & -3 & -3 & 42\end{vmatrix}=-3\begin{vmatrix} 11 & 10 & -83 \\ -6 & -5 & 81 \\ -3 & -3 & 42\end{vmatrix}-\begin{vmatrix} -11 & -11 & 45 \\ -6 & -5 & 81 \\ -3 & -3 & 42\end{vmatrix}+\begin{vmatrix} -11 & -11 & 45 \\ 11 & 10 & -83 \\ -3 & -3 & 42\end{vmatrix}-0\cdot \begin{vmatrix} -11 & -11 & 45 \\ 11 & 10 & -83 \\ -6 & -5 & 81 \end{vmatrix} =\ldots =42$$

Could you give me a hint how we could calculate the determinant of $B$ and $C$ ? (Wondering)
 
Physics news on Phys.org
You can use the third elementary row operation (it does not change the determinant) to make as many elements zero as possible in a certain column. For example, in problem 2 you can subtract the last row from all other rows. Then the matrix will become the identity matrix except for the last row and column. Then subtract from the last row the first row multiplied by $a_1$, the second row multiplied by $a_2$ and so on to eliminate all elements of the last row except the bottom right element.
 
Ah ok! So, we have the following:

2. $$|B|=\begin{vmatrix}1+a_1 & a_2 & \ldots & a_n \\ a_1 & 1+a_2 & \ldots & a_n \\ \ldots & \ldots & \ldots & \ldots \\ a_1 & a_2 & \ldots & 1+a_n\end{vmatrix}$$

By the row operation $R_i=R_i-R_n$ for each $i\in \{1, \ldots , n-1\}$ we get
$$|B|=\begin{vmatrix}1 & 0 & \ldots & -1 \\ 0 & 1 & \ldots & -1 \\ \ldots & \ldots & \ldots & \ldots \\ a_1 & a_2 & \ldots & 1+a_n\end{vmatrix}$$

By the row operation $R_n=R_n-a_1\cdot R_1-a_2\cdot R_2-\ldots -a_{n-1}\cdot R_{n-1}$ we get
$$|B|=\begin{vmatrix}1 & 0 & \ldots & -1 \\ 0 & 1 & \ldots & -1 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & 1+\sum_{i=0}^na_i\end{vmatrix}=\begin{vmatrix} 1 & \ldots & -1 \\ \ \ldots & \ldots & \ldots \\ 0 & \ldots & 1+\sum_{i=0}^na_i\end{vmatrix}= \ldots =\begin{vmatrix}1 & -1 \\ 0 &1+\sum_{i=0}^na_i\end{vmatrix}=1+\sum_{i=0}^na_i$$

Is this correct? (Wondering) 3. $$|C|=\begin{vmatrix}0 & 1 & \ldots & 1 \\ 1 & 0 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots \\ 1 & 1 & \ldots & 0\end{vmatrix}$$

By the row operation $R_1=R_1+R_2+\ldots +R_n$ we get
$$|C|=\begin{vmatrix}n-1 & n-1 & \ldots & n-1 \\ 1 & 0 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots \\ 1 & 1 & \ldots & 0\end{vmatrix}=(n-1)\begin{vmatrix}1 & 1 & \ldots & 1 \\ 1 & 0 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots \\ 1 & 1 & \ldots & 0\end{vmatrix}$$

By the row operation $R_i=R_i-R_1$ for $i\in \{2, \ldots , n\}$ we get
$$|C|=(n-1)\begin{vmatrix}1 & 1 & \ldots & 1 \\ 0 & -1 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & -1\end{vmatrix}=(n-1)\begin{vmatrix} -1 & \ldots & 0 \\ \ldots & \ldots & \ldots \\ 0 & \ldots & -1\end{vmatrix}=(n-1)(-1)^{n-1}\begin{vmatrix} 1 & \ldots & 0 \\ \ldots & \ldots & \ldots \\ 0 & \ldots & 1\end{vmatrix}=(n-1)(-1)^{n-1}|I_{n-1}|=(n-1)(-1)^{n-1}$$

Is this correct? (Wondering)
 
Suppose we have the matrix $A_n=(A_{ij})\in \mathbb{C}^{n\times n}$ with $a_{ij}=\left\{\begin{matrix}
1 , & i=j\\
-1 , & i=j-1\\
j^2, & i=j+1\\
0 , & \text{ otherwise}
\end{matrix}\right.$ for $1\leq i,j\leq n$.

I want to find the determinant using induction.

I have done the following:

To see the patern I have made some examples:

For $n=2$ we have the matrix $A_2=\begin{pmatrix}1& -1 \\ 1& 1\end{pmatrix}$. The determinant is $|A_2|=\begin{vmatrix}1& -1 \\ 1& 1\end{vmatrix}=2=n(n-1)$.

For $n=3$ we have the matrix $A_3=\begin{pmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{pmatrix}$. The determinant is $|A_3|=\begin{vmatrix}1& -1& 0 \\ 1 & 1 & -1 \\ 0 & 4 & 1\end{vmatrix} \ \ \overset{R_2=R_2-R_1}{ = } \ \ \begin{vmatrix}1& -1& 0 \\ 0 & 2 & -1 \\ 0 & 4 & 1\end{vmatrix}=\begin{vmatrix} 2 & -1 \\ 4 & 1\end{vmatrix}=2-(-4)=6=n(n-1)$. So, we want to prove that the determinant is $|A_n|=n(n-1)$, for $n\geq 2$, right? (Wondering) Induction on $n$.

Base case: For $n=2$, as shown above, it holds.

Inductive hypothesis: We suppose that it holds for $n=k$, i.e., $|A_k|=k(k-1)$.

Inductive step: We want to prove it for $n=k+1$, i.e., that it holds that $|A_{k+1}|=(k+1)k$. When we consider the matrix without the last row and without the last column, it is the matrix $A_k$.

But what is the relation between the determinant of $A_k$ and that of $A_{k+1}$ ? (Wondering)
 
I agree for problems 2 and 3 from post #1. For the problem about induction, you may want to create a new thread.
 
Evgeny.Makarov said:
I agree for problems 2 and 3 from post #1. For the problem about induction, you may want to create a new thread.

Ok, I will do that.

Thank you very much! (Smile)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K