Undergrad Calculating Dyadic Green's Function Expression

Click For Summary
The discussion focuses on deriving the expression for the Dyadic Green's function from the equations of motion in vector form. The initial scalar case is established using a standard equation of motion in Fourier space, leading to a scalar Green's function expression. The transition to the vector form introduces complexity due to matrix multiplication, prompting a request for guidance on formulating the dyadic Green's function. A suggestion is made to include the term from the right-hand side in the left-hand side of the equation, leading to a potential expression for the Green's function as the inverse of the modified matrix. The conversation concludes with a query about constructing the Green's function using known eigenvalues and eigenvectors of the matrix.
Karthiksrao
Messages
66
Reaction score
0
Dear all,
Need your suggestions as to how I can arrive at the expression for the Dyadic Green's function.

The scalar case is simple:
Consider the standard equation of motion in Fourier space: ## \omega^2 \hat{x}(\omega) = \omega_0^2 \hat{x}(\omega) - i \delta \omega \hat{x}(\omega)+ F(\omega) ##, where ##F## is the forcing function, and ##\delta## the damping parameter. Defining the scalar Green's function from the equation: ## \hat{x}(\omega) = G(\omega) F(\omega) ##, and substituting this in the above equation of motion, we get the expression for the scalar green's function as:
$$ G(\omega) = \frac{1}{\omega^2 - \omega_0^2 + i \delta \omega };$$

Now consider going to the vector form for the displacement, and consequently the dyadic form for the Green's function - as seen for coupled harmonic oscillator problems. The equations of motion can be reduced to the form:
$$ \hat{\bf{x}}(\omega) = \bar{\bar{\bf{A}}} \hat{\bf{x}}(\omega) + \bf{F}(\omega) $$
where ##\bar{\bar{\bf{A}}}## is a matrix.

Now defining the Green's function as before: ## \hat{\bf{x}}(\omega) = \bar{\bar{\bf{G}}}(\omega) \bf{F}(\omega) ##, is it possible to arrive at an expression for the Green's function? The problem is complicated (as compared to the scalar problem) due to the inherent summations that exist in the matrix multiplication.

Can anybody suggest how I can proceed ?

Thanks!
 
Physics news on Phys.org
You really should include ##Ax## from the RHS in the LHS instead. You would obtain
$$
(1-A)x = F.
$$
The Green's function would be ##(1-A)^{-1}##, i.e., just the inverse of ##1-A##.
 
  • Like
Likes jim mcnamara
Thanks for getting back. A follow up query: if I know the eigenvalues and the eigenvectors of the matrix A, would I be in a position to construct the Green's function from just this information ?

I have attached a document where this has been done, and I haven't been able to follow the procedure. Any help would be appreciated.

Thanks!
 

Attachments

I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K