MHB Calculating Elliptical Orbit Points & Flight Path Angle

AI Thread Summary
To determine the points on an elliptical orbit where the speed matches the local circular orbital speed, one must equate the velocities of both orbits. This occurs at the periapsis and apoapsis of the elliptical orbit. The flight path angle at these points can be calculated using the equation tan(γ) = (e sin(θ)) / (1 + e cos(θ)), resulting in angles of 0 at periapsis and π at apoapsis. The discussion confirms that these are indeed the correct solutions, although some participants express uncertainty about the underlying methods. Understanding these calculations is crucial for analyzing orbital mechanics effectively.
Dustinsfl
Messages
2,217
Reaction score
5
Determine the location of the point(s) on an elliptical orbit at which the speed is equal to the (local) circular orbital speed. Determine the flight path angle at this location.

What equation(s) should I be using or thinking about for this?
 
Mathematics news on Phys.org
dwsmith said:
Determine the location of the point(s) on an elliptical orbit at which the speed is equal to the (local) circular orbital speed. Determine the flight path angle at this location.

What equation(s) should I be using or thinking about for this?

Hi dwsmith, :)

The velocity of an object in elliptical orbit is given >>here<< and that of a circular orbit is given >>here<<. So by equating two speeds you will be able to find values for \(r\). The equation for the flight path angle is given >>here<<.

Kind Regards,
Sudharaka.
 
Sudharaka said:
Hi dwsmith, :)

The velocity of an object in elliptical orbit is given >>here<< and that of a circular orbit is given >>here<<. So by equating two speeds you will be able to find values for \(r\). The equation for the flight path angle is given >>here<<.

Kind Regards,
Sudharaka.

So the velocities are the same on the semi-major axis. That is, on the periapsis and apoapsis.
The flight path angle is giving by
$$
\tan\gamma = \frac{e\sin\theta}{1 + e\cos\theta}
$$
At periapsis, the angle is 0, and at apoapsis, the angle is pi.
So $\gamma = 0,\pi$? Is this really the solution?
 
dwsmith said:
So the velocities are the same on the semi-major axis. That is, on the periapsis and apoapsis.
The flight path angle is giving by
$$
\tan\gamma = \frac{e\sin\theta}{1 + e\cos\theta}
$$
At periapsis, the angle is 0, and at apoapsis, the angle is pi.
So $\gamma = 0,\pi$? Is this really the solution?

Assuming you have done the algebra correctly, the answer is yes. I am not too confident about the method used since my knowledge about these kind of problems related to physics is quite limited. Hope some other member will be able to provide more insight on this problem. :)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
6
Views
3K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
58
Views
4K
Replies
7
Views
2K
Replies
11
Views
2K
Replies
3
Views
2K
Back
Top