MHB Calculating Elliptical Orbit Points & Flight Path Angle

AI Thread Summary
To determine the points on an elliptical orbit where the speed matches the local circular orbital speed, one must equate the velocities of both orbits. This occurs at the periapsis and apoapsis of the elliptical orbit. The flight path angle at these points can be calculated using the equation tan(γ) = (e sin(θ)) / (1 + e cos(θ)), resulting in angles of 0 at periapsis and π at apoapsis. The discussion confirms that these are indeed the correct solutions, although some participants express uncertainty about the underlying methods. Understanding these calculations is crucial for analyzing orbital mechanics effectively.
Dustinsfl
Messages
2,217
Reaction score
5
Determine the location of the point(s) on an elliptical orbit at which the speed is equal to the (local) circular orbital speed. Determine the flight path angle at this location.

What equation(s) should I be using or thinking about for this?
 
Mathematics news on Phys.org
dwsmith said:
Determine the location of the point(s) on an elliptical orbit at which the speed is equal to the (local) circular orbital speed. Determine the flight path angle at this location.

What equation(s) should I be using or thinking about for this?

Hi dwsmith, :)

The velocity of an object in elliptical orbit is given >>here<< and that of a circular orbit is given >>here<<. So by equating two speeds you will be able to find values for \(r\). The equation for the flight path angle is given >>here<<.

Kind Regards,
Sudharaka.
 
Sudharaka said:
Hi dwsmith, :)

The velocity of an object in elliptical orbit is given >>here<< and that of a circular orbit is given >>here<<. So by equating two speeds you will be able to find values for \(r\). The equation for the flight path angle is given >>here<<.

Kind Regards,
Sudharaka.

So the velocities are the same on the semi-major axis. That is, on the periapsis and apoapsis.
The flight path angle is giving by
$$
\tan\gamma = \frac{e\sin\theta}{1 + e\cos\theta}
$$
At periapsis, the angle is 0, and at apoapsis, the angle is pi.
So $\gamma = 0,\pi$? Is this really the solution?
 
dwsmith said:
So the velocities are the same on the semi-major axis. That is, on the periapsis and apoapsis.
The flight path angle is giving by
$$
\tan\gamma = \frac{e\sin\theta}{1 + e\cos\theta}
$$
At periapsis, the angle is 0, and at apoapsis, the angle is pi.
So $\gamma = 0,\pi$? Is this really the solution?

Assuming you have done the algebra correctly, the answer is yes. I am not too confident about the method used since my knowledge about these kind of problems related to physics is quite limited. Hope some other member will be able to provide more insight on this problem. :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
6
Views
3K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
58
Views
4K
Replies
7
Views
2K
Replies
11
Views
2K
Replies
3
Views
2K
Back
Top