Calculating exciton Green's function on a tight binding chain

physicsxanime
Messages
13
Reaction score
3
Homework Statement
On a 1-D tight binding chain, when you put an electron from a site in the valence band to another site in the conduction band, you will can create an exciton if there is Hubbard attraction between the electron and hole. I would like to calculate the green's function of such two particle excited state.
The Hamiltonian of interest:
$$H = t\sum c^\dagger_{n+1}c_{n} - t\sum v^\dagger_{n+1}v_{n} + h.c. + U\sum c^\dagger_{n}c_{n}v^\dagger_{n}v_{n}$$
Relevant Equations
Lehmann representation of Green's function $$G(x,x';E) = \sum_n \frac{<\Psi^N_0|\psi(x)|\Psi^{N+1}_n><\Psi^{N+1}_n|\psi^\dagger(x')|\Psi^N_0>}{E + E^N_0-E^{N+1}_n +i\eta}$$
Honestly, I have no real idea. I know for sure the equation connects the initial state ##|\Psi^N_0>##to a final state ##|\Psi^{N+1}_0>##, ##E## is the energy and ##E^N_0## etc are the energy of the initial state and final state. I also know that these energy are related to conduction band and valence band energy like ##2t\cos(ka)##. But I don't really know what ##\psi(x)## represent here, how to get the wave functions ##|\Psi^{N+1}_0>##, and what it is summing over.

As you can see, I have a severe lack of knowledge here, so any help will be greatly appreciated and if possible, point to me some introductory resources on topics of condensed matter and many particle green's function.
 
Physics news on Phys.org
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top