Calculating exciton Green's function on a tight binding chain

AI Thread Summary
The discussion revolves around calculating the exciton Green's function in a tight binding chain, focusing on the relationship between initial and final states in terms of energy. Key equations connect the initial state to the final state, with energies linked to conduction and valence bands. There is uncertainty about the representation of the wave function and how to derive the wave functions for the final state. Participants express a need for foundational knowledge in condensed matter physics and many-particle Green's functions. The conversation highlights a desire for guidance and resources to better understand these complex concepts.
physicsxanime
Messages
13
Reaction score
3
Homework Statement
On a 1-D tight binding chain, when you put an electron from a site in the valence band to another site in the conduction band, you will can create an exciton if there is Hubbard attraction between the electron and hole. I would like to calculate the green's function of such two particle excited state.
The Hamiltonian of interest:
$$H = t\sum c^\dagger_{n+1}c_{n} - t\sum v^\dagger_{n+1}v_{n} + h.c. + U\sum c^\dagger_{n}c_{n}v^\dagger_{n}v_{n}$$
Relevant Equations
Lehmann representation of Green's function $$G(x,x';E) = \sum_n \frac{<\Psi^N_0|\psi(x)|\Psi^{N+1}_n><\Psi^{N+1}_n|\psi^\dagger(x')|\Psi^N_0>}{E + E^N_0-E^{N+1}_n +i\eta}$$
Honestly, I have no real idea. I know for sure the equation connects the initial state ##|\Psi^N_0>##to a final state ##|\Psi^{N+1}_0>##, ##E## is the energy and ##E^N_0## etc are the energy of the initial state and final state. I also know that these energy are related to conduction band and valence band energy like ##2t\cos(ka)##. But I don't really know what ##\psi(x)## represent here, how to get the wave functions ##|\Psi^{N+1}_0>##, and what it is summing over.

As you can see, I have a severe lack of knowledge here, so any help will be greatly appreciated and if possible, point to me some introductory resources on topics of condensed matter and many particle green's function.
 
Physics news on Phys.org
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top