Calculating Force on Shaft Bearings - Hydro Power Systems

AI Thread Summary
To calculate the force on shaft bearings in hydro power systems, both axial and radial forces must be considered, particularly in relation to allowable vibration limits, such as the specified 2 mm/sec. Vibration affects the load on bearings due to unbalanced loads, complicating the calculation. A simplified model of a rotating machine includes various components like the rotor, shaft, and bearings, but deriving bearing forces from vibration measurements is often challenging. In simpler machines with known unbalance, bearing forces can be calculated using the unbalance moment and speed. Ultimately, achieving proper balance and understanding hydrodynamic forces is crucial for accurate calculations.
tamar
Messages
3
Reaction score
1
TL;DR Summary
Force calculation
I know the moment of inertia and the rotating speed of a shaft, and the allowable vibration is 2mm/sec. How is the force calculated? What is the formula to calculate the force on the shaft bearings which are a know distance from centre of gravity?
Thanks
 
Engineering news on Phys.org
:welcome:

Which forces, axial or radial? What does vibration have to do with it?

Is this a homework question? If so, we can move it to a homework forum, and you are required to post your attempt at the answer before getting help.
 
Not a homework question.

Both axial and radial.
Vibration means it is the limit allowable as an unbalanced load for vibration hence this will exert extra load on bearings which I need to calculate.
 
School notes I have pulled out from the garage from 30yrs ago:)
 
It would depend very much on the type of hydro turbine, and its condition. I don't know of any simple formula. Perhaps others here can help, such as @jrmichler
 
A vibration specification of 2 mm/sec can be translated into acceleration and displacement if it is at a single frequency. This is only rarely the case.

A simplified model of a simple rotating machine, such as a simple hydro turbine is as follows:
A lumped mass representing the rotor
A spring representing the shaft
A spring representing the bearing
A lumped mass representing the bearing housing
A spring representing the machine frame
A lumped mass representing the machine frame
A spring representing the machine foundation

Vibration measurements are typically made on bearing housings, and sometimes on machine frames. Given all of the springs and masses in a simplified model, calculating bearing forces from a measurement made on the bearing housing is only rarely possible.

If you have an unusually simple machine where all stiffnesses are "large", and there is a known unbalance, then bearing forces can be calculated from the unbalance moment and speed. This would be the case in, for example, a one cylinder engine or reciprocating air compressor.

The real world solution is to do a two plane dynamic balance, then calculate the hydrodynamic forces. If it is properly balanced, the unbalance forces will be small compared to the hydrodynamic forces. Note that hydrodynamic forces can vary at the blade passing frequency, which is a cause of vibration.
 
  • Like
  • Informative
Likes anorlunda, berkeman, Lnewqban and 1 other person
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top