B Calculating Fuel Efficiency of Rocket Going Near c

Peter564
Messages
2
Reaction score
0
How would you calculate the fuel efficiency of a rocket (around 10 tonnes) going near the speed of light?
 
Physics news on Phys.org
Peter564 said:
How would you calculate the fuel efficiency of a rocket (around 10 tonnes) going near the speed of light?
You would take the change in energy of the rocket and divide it by the change in energy of the fuel.
 
  • Like
Likes Vanadium 50
Peter564 said:
How would you calculate the fuel efficiency of a rocket (around 10 tonnes) going near the speed of light?

There are several things you might be interested in - are you interested in how much fuel you need to get a specified increase in velocity?

Basically, you need the relativistic rocket equation, and the exhaust velocity of the rocket, if that's what you're trying to measure. I would suggest https://math.ucr.edu/home/baez/physics/Relativity/SR/Rocket/rocket.html for the relativistic rocket equation. Wikipedia also has an entry which I'm less familiar with, https://en.wikipedia.org/wiki/Relativistic_rocket.

Other interesting cases you might consider are a relativistic laser driven light sail with perfect transmission efficiency. But I don't recall seeing anything written about that, though it's an interesting case to analyze. Doppler shift of the light from the laser makes the acceleration of the rocket taper off as it reaches higher and higher velocities.

It's really up to you to give more details of what you consider to be "fuel efficiency", one suggestion is the amount of energy in the burned fuel vs the amount of energy that the rocket gains in some specific frame of reference where the rocket's velocity is given by some particular value. You will, of course, find in this case that choosing this definition of "fuel efficiency" makes the "fuel efficiency" dependent on the choice of frame of reference in which it's mentioned.

The key parameters I see are the exhaust velocity of the rocket, the starting mass ratio of the rocket, and the current velocity of the rocket.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top