MHB Calculating Logistic Growth Rate

andre6051
Messages
1
Reaction score
0
I have a logistic growth problem. I know this because there is an upper limit of approximately 21,000 people. I need to calculate growth rate. Would it be something as simple as taking two populations and dividing them to get the rate (X2-X1/X1) to obtain it or is there an equation I am missing? I feel like the growth rate is harder to find than that. Plus, for some reason, the number shot up in 2015 and I don't know what to do. The only info I have is below. Thanks!

Example

X Y
44 2010
61 2011
79 2012
208 2013
326 2014
6663 2015
 
Mathematics news on Phys.org
andre6051 said:
I have a logistic growth problem. I know this because there is an upper limit of approximately 21,000 people. I need to calculate growth rate. Would it be something as simple as taking two populations and dividing them to get the rate (X2-X1/X1) to obtain it or is there an equation I am missing? I feel like the growth rate is harder to find than that. Plus, for some reason, the number shot up in 2015 and I don't know what to do. The only info I have is below. Thanks!

Example

X Y
44 2010
61 2011
79 2012
208 2013
326 2014
6663 2015

Hi andre6051! Welcome to MHB! (Smile)

It looks like Y is a year and X increases exponentially.
So the relevant equation would be $X=AB^Y$ so that $\frac {X_2}{X_1} = \frac{AB^{Y_2}}{AB^{Y_1}} = B^{Y_2 - Y_1}$.
For successive years that means $B = \frac {X_2}{X_1}$.

It also means that $\log X = \log A + Y \log B$.
Typically we would find a linear regression between $\log X$ and $Y$ to figure out the relation.

Then again, as you already noticed, in 2015 the number shot up, causing an outlier.
We should get more information why that is, since it may mean we can't treat it as a logistic growth problem.
Can it be that the last X should really be, say, 663? Maybe there is a typo...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top