MHB Calculating Logistic Growth Rate

AI Thread Summary
To calculate the logistic growth rate, the equation X = AB^Y is relevant, where X represents the population and Y the year. The growth factor B can be determined using B = X2/X1 for successive years. A linear regression of log X against Y can help identify the relationship, but the significant jump in population in 2015 raises concerns about treating the data as logistic growth. This anomaly suggests the possibility of an error in the 2015 data, indicating that further investigation is needed. Understanding the cause of this spike is crucial for accurate growth rate calculations.
andre6051
Messages
1
Reaction score
0
I have a logistic growth problem. I know this because there is an upper limit of approximately 21,000 people. I need to calculate growth rate. Would it be something as simple as taking two populations and dividing them to get the rate (X2-X1/X1) to obtain it or is there an equation I am missing? I feel like the growth rate is harder to find than that. Plus, for some reason, the number shot up in 2015 and I don't know what to do. The only info I have is below. Thanks!

Example

X Y
44 2010
61 2011
79 2012
208 2013
326 2014
6663 2015
 
Mathematics news on Phys.org
andre6051 said:
I have a logistic growth problem. I know this because there is an upper limit of approximately 21,000 people. I need to calculate growth rate. Would it be something as simple as taking two populations and dividing them to get the rate (X2-X1/X1) to obtain it or is there an equation I am missing? I feel like the growth rate is harder to find than that. Plus, for some reason, the number shot up in 2015 and I don't know what to do. The only info I have is below. Thanks!

Example

X Y
44 2010
61 2011
79 2012
208 2013
326 2014
6663 2015

Hi andre6051! Welcome to MHB! (Smile)

It looks like Y is a year and X increases exponentially.
So the relevant equation would be $X=AB^Y$ so that $\frac {X_2}{X_1} = \frac{AB^{Y_2}}{AB^{Y_1}} = B^{Y_2 - Y_1}$.
For successive years that means $B = \frac {X_2}{X_1}$.

It also means that $\log X = \log A + Y \log B$.
Typically we would find a linear regression between $\log X$ and $Y$ to figure out the relation.

Then again, as you already noticed, in 2015 the number shot up, causing an outlier.
We should get more information why that is, since it may mean we can't treat it as a logistic growth problem.
Can it be that the last X should really be, say, 663? Maybe there is a typo...
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top