Calculating New Emission Rate of Radioactive Source

Click For Summary

Discussion Overview

The discussion revolves around calculating the new emission rate of a radioactive source based on a change in the probability of emissions over a specified time period. The context includes the application of the Poisson distribution to model the emissions, with a focus on the mathematical reasoning involved in determining the new rate.

Discussion Character

  • Mathematical reasoning, Technical explanation

Main Points Raised

  • One participant states that the emission rate changes such that the probability of 0 or 1 emission in 4 seconds becomes 0.8, leading to a calculation of the new rate.
  • Another participant provides a mathematical derivation using the Poisson distribution formula, concluding that the new average emission rate is approximately 0.206 emissions per second.
  • A subsequent participant inquires about the method used to arrive at the value of 0.824, asking if it was through guess and check or numerical methods.
  • The original poster mentions using an online calculator to find the value, while also suggesting that guessing or consulting a Poisson distribution table could be alternative methods.

Areas of Agreement / Disagreement

Participants do not appear to reach a consensus on the methods used for calculation, with differing approaches mentioned but no definitive agreement on a single method being preferred.

Contextual Notes

The discussion includes assumptions about the Poisson distribution and the specific parameters used in the calculations, but these assumptions are not explicitly stated or resolved.

araz1
Messages
9
Reaction score
0
A radioactive source emits particles at an average rate of 1 pe second. Assume that the number of emissions follows a Poisson distribution. The emission rate changes such that the probability of 0 or 1 emission in 4 seconds becomes 0.8. What is the new rate? Thanks.
 
Physics news on Phys.org
araz said:
A radioactive source emits particles at an average rate of 1 pe second. Assume that the number of emissions follows a Poisson distribution. The emission rate changes such that the probability of 0 or 1 emission in 4 seconds becomes 0.8. What is the new rate? Thanks.

Hi araz, welcome to MHB! ;)

We have:
$$P(\text{0 or 1 emission in 4 seconds})=0.8 \\ \implies
P(\text{0 emission in 4 seconds}) + P(\text{1 emission in 4 seconds}) = \frac{\lambda^0 e^{-\lambda}}{0!} + \frac{\lambda^1 e^{-\lambda}}{1!} = (1+\lambda)e^{-\lambda} = 0.8 \\ \implies
\lambda \approx 0.824
$$
So the average number of emissions in 4 seconds is $0.824$, which is $0.206$ per second.
 
Klaas van Aarsen said:
Hi araz, welcome to MHB! ;)

We have:
$$P(\text{0 or 1 emission in 4 seconds})=0.8 \\ \implies
P(\text{0 emission in 4 seconds}) + P(\text{1 emission in 4 seconds}) = \frac{\lambda^0 e^{-\lambda}}{0!} + \frac{\lambda^1 e^{-\lambda}}{1!} = (1+\lambda)e^{-\lambda} = 0.8 \\ \implies
\lambda \approx 0.824
$$
So the average number of emissions in 4 seconds is $0.824$, which is $0.206$ per second.

Thank you Klaas. Did you use guess and check or numerical methods to get 0.824?
Regards
 
araz said:
Thank you Klaas. Did you use guess and check or numerical methods to get 0.824?
Regards

I used an online calculator to find it.
Alternatively guessing can work, or we can look it up in a Poisson distribution table.
 

Similar threads

Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K