I Calculating the Area of an RN Event Horizon with Specific Heat Formula

Click For Summary
The discussion focuses on calculating the area of a Reissner-Nordström (RN) event horizon using specific heat formulas. It begins with the relationship between specific heat, temperature, and entropy, leading to the need to determine the area of the event horizon. The confusion arises from the integration process involving coordinates and the metric, with an initial assumption of area calculation yielding a potential error. The discussion also explores the use of a timelike Killing vector to derive the surface gravity and temperature at the horizon. Ultimately, the area is expected to be calculated using a derived formula involving mass and charge parameters, with further exploration planned.
etotheipi
By definition ##C = T_H \dfrac{\partial S}{\partial T_H} \bigg{)}_Q## so given ##A=4S## we first need to work out the area of the event horizon. More specifically, let ##\Sigma## be a partial Cauchy surface of constant ##v## in ingoing EF ##(v,r,\theta, \phi)## co-ordinates then ##A## is the area of the 2-sphere ##\Sigma \cap \mathcal{H}^+##. This is where I get confused, because since ##g = -\dfrac{\Delta}{r^2} dv^2 + 2dv dr + r^2 d\Omega^2## surely we could just let ##(\theta, \phi)## be co-ordinates on ##R## with ##\sqrt{h} = r^2 \sin{\theta}## and hence ##A = \int_{\varphi(R)} d\theta \wedge d\phi \sqrt{h} = 4\pi r^2##, which must be wrong. How do you actually calculate the area of ##R##?
 
Physics news on Phys.org
Actually, maybe it's not wrong? We can try to figure out ##T_H## by using the identity ##d(\xi^a \xi_a)_{\mathcal{N}} = - 2\kappa \xi## and for RN we have a timelike Killing vector ##k =\partial / \partial v## so\begin{align*}
d(k^a k_a) = d(g_{ab} k^a k^b) = d\left( \frac{-\Delta}{r^2} \right) = \left(\frac{2\Delta}{r^3} - \frac{1}{r^2} \dfrac{d\Delta}{dr} \right) dr
\end{align*}and since ##k = dr## at ##r=r_{\pm}## we have ##\kappa = \dfrac{r_+-r_-}{2r_+^2}## and ##T_H = \dfrac{\kappa}{2\pi}## so\begin{align*}

T_H = \frac{1}{2\pi} \left( \frac{\sqrt{M^2-e^2}}{2M^2 -e^2 + 2M\sqrt{M^2-e^2}} \right)

\end{align*}I think the rest should be straightforward using ##A = 4\pi \left(2M^2 - e^2 + 2M\sqrt{M^2-e^2} \right)##, but I'll try that later because I have a call now
 
Last edited by a moderator:
In Birkhoff’s theorem, doesn’t assuming we can use r (defined as circumference divided by ## 2 \pi ## for any given sphere) as a coordinate across the spacetime implicitly assume that the spheres must always be getting bigger in some specific direction? Is there a version of the proof that doesn’t have this limitation? I’m thinking about if we made a similar move on 2-dimensional manifolds that ought to exhibit infinite order rotational symmetry. A cylinder would clearly fit, but if we...