The Kerr metric for a black hole of mass ##M## and angular momentum ##J = aM## is(adsbygoogle = window.adsbygoogle || []).push({});

$$ds^{2} = - \frac{\Delta(r)}{\rho^{2}}(dt-a\sin^{2}\theta d\phi)^{2} + \frac{\rho^{2}}{\Delta(r)}dr^{2} + \rho^{2} d\theta^{2} + \frac{1}{\rho^{2}}\sin^{2}\theta (adt - (r^{2}+a^{2}) d\phi)^{2},$$

where ##\Delta(r) = r^{2} + a^{2} - 2Mr##, ##\rho^{2} = r^{2} + a^{2} \cos^{2}\theta## and ##- M < a < M##.

The event horizon is at ##r_{+} = M + \sqrt{M^{2} - a^{2}}##. This is obtained by solving the equation ##\Delta(r) = 0##.

How do you use this to compute the area of the horizon?

My idea is to simplify the metric to obtain

$$ds^{2} = - \left( \frac{r^{2} + a^{2} - 2Mr - a^{2} \sin^{2}\theta}{r^{2} + a^{2} \cos^{2}\theta} \right) dt^{2} + \left( \frac{r^{2} + a^{2} \cos^{2}\theta}{r^{2} + a^{2} - 2Mr} \right) dr^{2} - \left( \frac{4aMr \sin^{2}\theta}{r^{2} + a^{2} \cos^{2}\theta} \right) dtd\phi + \left( r^{2} + a^{2} \cos^{2}\theta \right) d\theta^{2} + \sin^{2}\theta \left( \frac{(a^{2} + r^{2})^{2} - a^{2} \sin^{2}\theta (a^{2}-2Mr+r^{2}) }{r^{2} + a^{2} \cos^{2}\theta} \right) d\phi^{2}.$$

Then, I think that the area of the horizon is given by

$$A = \int d\theta\ d\phi\ g_{\phi\phi}g_{\theta\theta}|_{r=r_{+}}.$$

Am I wrong?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Area of the event horizon of a rotating black hole

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**