Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Calculating the gradient of a surface

  1. Aug 2, 2011 #1
    Hi

    z(x,y,t)=a sin(ωt) sin(k/Lx*pi*x) sin(l/Ly*pi*y)

    a = Amplitude
    ω = Frequency
    k and l are constants
    Lx = Length in x direction
    Ly = Length in y direction


    How can I find [using an equation] the slope of the surface [ie the gradient] at any given point on the surface?

    I know how to do it in the x direction and y direction independently:
    dz/dx for x direction and dz/dy for y direction
    But how do I combine these two things?

    Thanks in Advance
     
  2. jcsd
  3. Aug 2, 2011 #2

    tiny-tim

    User Avatar
    Science Advisor
    Homework Helper

    Last edited by a moderator: Apr 26, 2017
  4. Aug 2, 2011 #3
    Thanks tiny-tim

    I can calculate:

    (dz/dx) = (k[itex]\pi[/itex]a)/Lx sin([itex]\omega[/itex]t) cos (k[itex]\pi[/itex]x)/Lx
    and
    (dz/dy) = (l[itex]\pi[/itex]b)/Ly sin([itex]\omega[/itex]t) cos (l[itex]\pi[/itex]y)/Ly

    But what is dz/dt?


    This is why I need to calculate the slope of the surface (z):

    I am trying to calculate the weight [W] of a particle on the dynamic surface (z)
    Because of the slope'ness' of the surface z, the acceleration of particle (parallel to the surface) is affected
    So in order to calculate the surface parallel Weight, I need to W*(Gradient of the slope)

    attachment.php?attachmentid=37705&stc=1&d=1312304788.png

    The above link by tiny-tim, helps me calculate the gradient in vector form, but how do convert it into a value to multiply it with W? Do I take the abs?


    Please Help, Thanks
     

    Attached Files:

    Last edited by a moderator: Apr 26, 2017
  5. Aug 3, 2011 #4

    tiny-tim

    User Avatar
    Science Advisor
    Homework Helper

    hi kakarot1905! :smile:
    i really don't understand what you're trying to do :confused:

    i don't see the relevance of the component W||, but it would be W times the sin of tan-1 of the gradient
     
  6. Aug 3, 2011 #5

    Thanks for the suggestion tiny tim.

    I got my plotting software [mathematica] to automatically calculate the gradient of the z function so I don't have to worry about taking dz/dx....

    This is the code i used: [mathematica]
    Code (Text):
    (gradf[x_, y_, t_] = {D[z[x, y, t], x], D[z[x, y, t], y],
       D[z[x, y, t], t]})
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Calculating the gradient of a surface
  1. Divergence of gradient (Replies: 1)

  2. Gradient question (Replies: 2)

Loading...