Calculating the mechanical index of applied ultrasound

AI Thread Summary
The discussion focuses on the calculation of the Mechanical Index (MI) using the formula MI = P_ra / √f, where pressure is affected by an attenuation factor dependent on depth and frequency. A specific example involving a 4 MHz pulse at 6 cm depth and 2 MPa pressure is analyzed, leading to confusion regarding the calculation of MI, particularly the value of 0.44. It is clarified that the normalization factor is often omitted in some papers, but it is essential for accurate unit representation. The attenuation is explained as affecting intensity, which is proportional to the square of acoustic pressure, ultimately leading to the correct MI calculation. The participant acknowledges the resolution of their calculation error, highlighting the importance of understanding the normalization factor.
rwooduk
Messages
757
Reaction score
59
On the surface, the equation is simply the peak rarefractional pressure divided by the root of the applied frequency:

##MI = \frac{P_{ra}}{\sqrt{f}}##

But the pressure is reduced/derated by an attenuation factor/coefficient that is dependent on depth and frequency e.g. ##0.3 \ dB / (cm \cdot MHz)##

An example calculation is given in the paper "Tutorial paper: thermal and mechanical indices". Where it takes a 4 MHz pulse, at 6cm, 2 Mpa, ##0.3 \ dB / (cm \cdot MHz)## and says the MI would be (2*0.44)/SQRT(4) = 0.44. I can't get the 0.44 because the dimensional analysis with units doesn't seem right.

##MI = \frac{MPa}{\sqrt{MHz}}\cdot \frac{dB}{cm\cdot MHz}##

I can easily calculate the attenuation, which is simply the attenuation coefficient multiplied by distance and frequency. Which for his example is 7.2 dB, I can also calculate intensity from this from I = I * 10^(-dB/10), but still don't get the 0.44.

Am I overcomplicating things?
 
Physics news on Phys.org
jim mcnamara said:
This is probably some help - note their approach seems a little different from yours-
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336845/
Thanks, I did see that paper but it seems they do not factor in the attenuation due to tissue / depth at all. I should have probably put this in the physics sections above as I think I'm having a calculation problem, rather than a definition problem. But I really appreciate the reply, thanks.
[Thread moved from the Medical forum to the Physics forums by a Mentor]
 
Last edited by a moderator:
There is a normalization factor in the formula. If the factor is written in the denominator the units are ##\frac{MPa}{MHz^{1/2}}##. The formula I use is ##MI=\frac{p_{r.03}}{C_{MI}\sqrt{f}}## where ##C_{MI}## is this normalization constant. This is concerning the units.
For the value, the attenuation refers to the intensity. The intensity is proportional to the square of the acoustic pressure. So you have ##10 log(I_1/I_2)= 7.2 dB ## and ## 20 log(p_1/p_2)= 7.2 dB## so the pressure at 6 cm is derated to ##\frac{2 Mpa}{10^{0.36}} ## which is about 0.87 MPa. Divide this by ##\sqrt{4}## and you get about 0.44.

Edit.
In some papers they don't put the normaliation factor in the formula but it is assumed to be there.
It does not change the values.
 
Last edited:
nasu said:
There is a normalization factor in the formula. If the factor is written in the denominator the units are ##\frac{MPa}{MHz^{1/2}}##. The formula I use is ##MI=\frac{p_{r.03}}{C_{MI}\sqrt{f}}## where ##C_{MI}## is this normalization constant. This is concerning the units.
For the value, the attenuation refers to the intensity. The intensity is proportional to the square of the acoustic pressure. So you have ##10 log(I_1/I_2)= 7.2 dB ## and ## 20 log(p_1/p_2)= 7.2 dB## so the pressure at 6 cm is derated to ##\frac{2 Mpa}{10^{0.36}} ## which is about 0.87 MPa. Divide this by ##\sqrt{4}## and you get about 0.44.

Edit.
In some papers they don't put the normaliation factor in the formula but it is assumed to be there.
It does not change the values.

Thank you very much nasu, I had completely messed up my calculation. Extremely helpful!
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. I am in no way trolling. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. Yes, I'm questioning the most elementary physics question we're given in this world. The classic elevator in motion question: A person is standing on a scale in an elevator that is in constant motion...
Thread ''splain this hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top