Undergrad Calculating the root of a number by hand

  • Thread starter Thread starter NODARman
  • Start date Start date
  • Tags Tags
    hand Root
Click For Summary
SUMMARY

The discussion focuses on methods for calculating roots by hand, specifically the square root of numbers like 1.2. The Babylonian method, also known as the Newton-Raphson method, is highlighted for its iterative approach to approximating square roots. A historical context is provided, noting that ancient Mesopotamians used similar techniques for root calculations. The conversation also clarifies misconceptions about the relationship between the cosine series and root calculations.

PREREQUISITES
  • Understanding of the Babylonian method for square roots
  • Familiarity with the Newton-Raphson method
  • Basic knowledge of Maclaurin series
  • Concept of numerical analysis algorithms
NEXT STEPS
  • Research the Babylonian method for computing square roots
  • Explore the Newton-Raphson method in detail
  • Study the Maclaurin series and its applications
  • Investigate historical methods of root calculation in ancient mathematics
USEFUL FOR

Mathematicians, educators, students learning numerical methods, and anyone interested in historical mathematical techniques for calculating roots by hand.

NODARman
Messages
57
Reaction score
13
TL;DR
.
Hi, is it possible, is there any formula that can help me to take root from (for example) 1,2 without a calculator (by hand)?
For example, there is a cos(x) formula that can be calculated on the paper:
$$\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !}$$

There is the Babylonian method for roots, but it's not as accurate as the cos(x) formula.
$$
x^{\prime}=\frac{1}{2}\left(x+\frac{n}{x}\right)
$$
 
Mathematics news on Phys.org
NODARman said:
Hi, is it possible, is there any formula that can help me to take root from (for example) 1,2 without a calculator (by hand)?
It's not clear to me what you are asking here.
Which root -- square root, cube root, etc.?
In your example are you asking about the square root of 1.2; i.e. ##\sqrt{1.2}##?
NODARman said:
For example, there is a cos(x) formula that can be calculated on the paper:
$$\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !}$$
This formula has nothing to do with roots. It is the Maclaurin series representation for the cosine function. There's a corresponding series for the sine function and many other functions.

NODARman said:
There is the Babylonian method for roots, but it's not as accurate as the cos(x) formula.
$$
x^{\prime}=\frac{1}{2}\left(x+\frac{n}{x}\right)
$$
I don't believe this derives from the Babylonians, since they knew nothing about derivatives. This formula derives from a technique called the Newton (or Newton-Raphson) method.

If you're interested in calculating square roots by hand, I was taught a technique back when I was in the 8th grade, a long time ago. The technique is somewhat akin to long division. As far as I know, it's no longer taught. Here's a link to a youtube video:
 
Last edited:
  • Like
Likes FactChecker, PeroK, DrClaude and 3 others
Mark44 said:
I don't believe this derives from the Babylonians, since they knew nothing about derivatives.
You don't need to know anything about derivatives to derive this method, you simply need to realise that if ## x ## is an understimate of ## \sqrt n ## then ## \frac n x ## is an overestimate (and vice versa) and therefore the midpoint ## x^{\prime}=\frac{1}{2}\left(x+\frac{n}{x}\right) ## is a better estimate.

The term "Babylonian method" is commonly used, although I am not aware of a confirmed source. See e.g. https://demonstrations.wolfram.com/BabylonianAlgorithmForComputingSquareRoots/.

Edit: https://www.sciencedirect.com/science/article/pii/S0315086098922091 seems to provide a source.
 
  • Like
Likes DrClaude, PeroK and NODARman
Mark44 said:
It's not clear to me what you are asking here.
Which root -- square root, cube root, etc.?
In your example are you asking about the square root of 1.2; i.e. ##\sqrt{1.2}##?

This formula has nothing to do with roots. It is the Maclaurin series representation for the cosine function. There's a corresponding series for the sine function and many other functions.I don't believe this derives from the Babylonians, since they knew nothing about derivatives. This formula derives from a technique called the Newton (or Newton-Raphson) method.

If you're interested in calculating square roots by hand, I was taught a technique back when I was in the 8th grade, a long time ago. The technique is somewhat akin to long division. As far as I know, it's no longer taught. Here's a link to a youtube video:

x' is not a derivative of x, it means the new result of x.
 
NODARman said:
x' is not a derivative of x, it means the new result of x.
Without any explanatory context, a "primed" variable would ordinarily be interpreted to mean the derivative of that variable.
 
These algorithms fall into something we call algorithms in mathematics. A numerical analysis book, has many of these types of solutions, not just for roots.

To give you a better answer. What are you trying to find the root of? a square root, cubic, function? A particular example would help.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 22 ·
Replies
22
Views
970