Calculating the time needed until a known velocity for a vehicle with friction as a function of velocity

Click For Summary
SUMMARY

The discussion focuses on calculating the time required for a vehicle to reach a known velocity while accounting for friction as a function of velocity. The friction force is defined by the equation f(v) = 70v + 6v², and the vehicle's mass is 1 ton. The user successfully derived the equations for acceleration and velocity but sought alternative methods to solve the integral without using partial fractions. The final calculation yielded a time of approximately 2.33 seconds for the vehicle to reach the target velocity.

PREREQUISITES
  • Understanding of Newton's second law of motion
  • Familiarity with calculus, specifically integration techniques
  • Knowledge of friction forces and their mathematical representation
  • Experience with partial fraction decomposition in integrals
NEXT STEPS
  • Explore alternative integration techniques beyond partial fractions
  • Study the application of numerical methods for solving integrals
  • Learn about the dynamics of vehicles and the impact of friction on motion
  • Investigate advanced calculus topics, such as Laplace transforms for differential equations
USEFUL FOR

Students studying physics or engineering, particularly those interested in vehicle dynamics and calculus applications in real-world scenarios.

Patrick Herp
Messages
5
Reaction score
0
Homework Statement
A truck with a mass of 1 ton is travelling at a constant speed of 36 km/h. It is known that the total friction force of all wheels with the asphalt can be expressed by the function ##f(v) = 70v + 6v^2##, where v is measured in m/s.
a. Determine the power output of the engine at that moment!
b. The maximum speed of the truck is 108 km/h. Determine the maximum power of the truck's engine!
c. If the truck is initially at rest and the accelerator pedal is pressed as hard as possible, determine the time it takes for the truck to reach half its maximum speed!
Relevant Equations
$$\sum{F} = ma$$
The solutions for (a) and (b) are pretty straightforward, which I got 13 kW and 225 kW each, but when I try to solve for (c), I get stuck with this:
$$
\begin{align}
a &= \frac{F}{m} \nonumber\\
&= \frac{F_\text{max}-f(v)}{m} \nonumber\\
&= \frac{7(30)+6(30)^2 -70v-6v^2}{1.000} \nonumber\\
\frac{dv}{dt} &= \frac{7.500-70v-6v^2}{1.000} \nonumber\\
\frac{dv}{7.500-70v-6v^2} &= \frac{dt}{1000} \implies t = 1.000\int_0^{15} \frac{dv}{7.500-70v-6v^2} \nonumber
\end{align}
$$
Is there any way I could solve for (c) without directly solving that integral?
 
Last edited:
Physics news on Phys.org
Why don't you want to solve the integral? Have you not seen the method of partial fractions?
 
Patrick Herp said:
Homework Statement: A truck with a mass of 1 ton is travelling at a constant speed of 36 km/h. It is known that the total friction force of all wheels with the asphalt can be expressed by the function ##f(v) = 70v + 6v^2##, where v is measured in m/s.
That looks more like air resistance. The point of having wheels is that they roll and avoid friction. Also, tires are generally made of high-friction rubber, which would be absurd if tire-asphalt friction were constantly acting against a vehicle's motion.
 
  • Agree
Likes   Reactions: kuruman
kuruman said:
Why don't you want to solve the integral? Have you not seen the method of partial fractions?
For more clarification, I don't really "know" where this question comes from, I just found it randomly on the internet, among other questions that I think belong to high school questions, so I find it really weird that this particular part of the question suddenly jumps in difficulty.
I did get the partial fraction of the integral to this:
$$
\begin{align}
\frac{t}{1.000} &= \int_0^{15} \frac{dv}{7.500 -70v -6v^2} \nonumber \\
&= -\frac{1}{6} \int_0^{15} \frac{dv}{\left( v-30 \right)\left( v+\frac{125}{3} \right)} \nonumber \\
&= -\frac{1}{6}\cdot \frac{3}{215} \int_0^{15} \left( \frac{1}{v-30} - \frac{1}{v+\frac{125}{3}} \right) dv \nonumber \\
\frac{t}{1.000} &= -\frac{1}{430} \left[ \ln{ \frac{v-30}{v+\frac{125}{3}} } \right]_0^{15} \nonumber \\
t &\approx 2.33\text{ s} \nonumber
\end{align}
$$

Basically, I just want to know if there is any way to solve that part without partial fraction or integral of 1/x
 
Last edited:

Similar threads

  • · Replies 27 ·
Replies
27
Views
1K
Replies
6
Views
2K
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K