MHB Calculations - absolute stability

AI Thread Summary
The discussion focuses on determining the order of accuracy and absolute stability for a specific Runge-Kutta method applied to a system of differential equations. The method is identified as having an order of accuracy of 2. The region of absolute stability is defined as S = { z ∈ ℂ: |(z²/2) + z + 1| < 1}, which is crucial for determining the appropriate step size, h, for stability in calculations. Participants inquire about the definition of absolute stability and the method for finding it, referencing the stability function r and its relationship to the method's tableau. Understanding these concepts is essential for ensuring accurate and stable numerical solutions.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave) The following Runge-Kutta method is given.

$$ \begin{array}{c|ccccc}
\tau_1 =0 & a_{11}=0 & a_{12} = 0\\
\tau_2 =\frac{5}{2} & a_{21} = \frac{5}{2} & a_{22} = 0\\
\hline
& b_1 = \frac{4}{5} & b_2 = \frac{1}{5} & \
\end{array} $$

I have to determine the order of accuracy and I found that it is $2$.


Then if the method is applied at the system $\\y_1'=-80y_1+20y_2 \\
y_2'=20y_1-80y_2$ what $h$ should we take so that the calculations get done with absolute stability?

How can we find such an $ h$?
I found that the region of absolute stability is $S=\{ z \in \mathbb{C}: |\frac{z^2}{2}+z+1|<1\}$. Does this help?
 
Mathematics news on Phys.org
Hi! (Mmm)

What do your notes say absolute stability is exactly? And how to find it? (Wondering)

Wiki says that the stability function $r$ is:
$$r(z) = 1 + z b^T (I-zA)^{-1} e = \frac{\det(I-zA+zeb^T)}{\det(I-zA)}$$
where $e$ stands for the vector of ones, and $b^T$ is the bottom row of the tableau. (Thinking)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top