Calculus 2 interval of convergence -- checking end points

rossmoesis
Messages
5
Reaction score
0

Homework Statement


[PLAIN]http://email.photobucket.com/wf/click?upn=tRCgAMfEfk8moxY0TjPC4lPPM0sXOKwutyIq47CMTKs0dzyywVYzTaMWH8-2Bzo5-2FsAT1hSn2u8nhtTlXRVI-2BDs3dbLwqV7FVPJZdCfwS6qDorV0c-2Blq6XRnrVUYsLffi2id9Ma4XDGYssMtivke9T0A-3D-3D_whPbjyDNqQqG-2FABCOAcFDhlciHlWVosDuzGNcx8ulLn1XPsw3RItB9a0ZKzbWUjhD5QN0BjKqPT3p-2FFMYnHwCHkxJ8U7UgTdccAw-2BQNDt-2FWYcVOcGYWyPrDnhFZ4wxeKwtHSMH-2FU0Ev-2FD82L-2F5FVMYpPr42BkMfKA0c7B9UFHMZbfml3RpIMxX73T-2BjugVi6TYP6-2BFgjtfKZemv5vG8xCDZrA74p9b7HQm1E0kHNLeQDGCyjMm4HzzVR9GA23nwt
http://email.photobucket.com/wf/click?upn=tRCgAMfEfk8moxY0TjPC4lPPM0sXOKwutyIq47CMTKs0dzyywVYzTaMWH8-2Bzo5-2FsAT1hSn2u8nhtTlXRVI-2BDs3dbLwqV7FVPJZdCfwS6qDorV0c-2Blq6XRnrVUYsLffi2id9Ma4XDGYssMtivke9T0A-3D-3D_whPbjyDNqQqG-2FABCOAcFDhlciHlWVosDuzGNcx8ulLn1XPsw3RItB9a0ZKzbWUjhD5QN0BjKqPT3p-2FFMYnHwCHkxJ8U7UgTdccAw-2BQNDt-2FWYcVOcGYWyPrDnhFZ4wxeKwtHSMH-2FU0Ev-2FD82L-2F5FVMYpPr42BkMfKA0c7B9UFHMZbfml3RpIMxX73T-2BjugVi6TYP6-2BFgjtfKZemv5vG8xCDZrA74p9b7HQm1E0kHNLeQDGCyjMm4HzzVR9GA23nwt

Homework Equations



Ratio test

The Attempt at a Solution



I found the interval of convergence. I'm having a hard time finding the correct test to make sure my end points either converge or diverge. I attached a picture of my work. Some hints would be greatly appreciated.
 
Last edited by a moderator:
Physics news on Phys.org
rossmoesis said:

Homework Statement


http://email.photobucket.com/wf/click?upn=tRCgAMfEfk8moxY0TjPC4lPPM0sXOKwutyIq47CMTKs0dzyywVYzTaMWH8-2Bzo5-2FsAT1hSn2u8nhtTlXRVI-2BDs3dbLwqV7FVPJZdCfwS6qDorV0c-2Blq6XRnrVUYsLffi2id9Ma4XDGYssMtivke9T0A-3D-3D_whPbjyDNqQqG-2FABCOAcFDhlciHlWVosDuzGNcx8ulLn1XPsw3RItB9a0ZKzbWUjhD5QN0BjKqPT3p-2FFMYnHwCHkxJ8U7UgTdccAw-2BQNDt-2FWYcVOcGYWyPrDnhFZ4wxeKwtHSMH-2FU0Ev-2FD82L-2F5FVMYpPr42BkMfKA0c7B9UFHMZbfml3RpIMxX73T-2BjugVi6TYP6-2BFgjtfKZemv5vG8xCDZrA74p9b7HQm1E0kHNLeQDGCyjMm4HzzVR9GA23nwt
http://email.photobucket.com/wf/click?upn=tRCgAMfEfk8moxY0TjPC4lPPM0sXOKwutyIq47CMTKs0dzyywVYzTaMWH8-2Bzo5-2FsAT1hSn2u8nhtTlXRVI-2BDs3dbLwqV7FVPJZdCfwS6qDorV0c-2Blq6XRnrVUYsLffi2id9Ma4XDGYssMtivke9T0A-3D-3D_whPbjyDNqQqG-2FABCOAcFDhlciHlWVosDuzGNcx8ulLn1XPsw3RItB9a0ZKzbWUjhD5QN0BjKqPT3p-2FFMYnHwCHkxJ8U7UgTdccAw-2BQNDt-2FWYcVOcGYWyPrDnhFZ4wxeKwtHSMH-2FU0Ev-2FD82L-2F5FVMYpPr42BkMfKA0c7B9UFHMZbfml3RpIMxX73T-2BjugVi6TYP6-2BFgjtfKZemv5vG8xCDZrA74p9b7HQm1E0kHNLeQDGCyjMm4HzzVR9GA23nwt

Homework Equations



Ratio test

The Attempt at a Solution



I found the interval of convergence. I'm having a hard time finding the correct test to make sure my end points either converge or diverge. I attached a picture of my work. Some hints would be greatly appreciated.

Your photo is unreadable on my screen. Please type it all out (as per PF standards), but if you still insist on posting an image, at least work at making it usable.
 
Last edited by a moderator:
Ray Vickson said:
Your photo is unreadable on my screen. Please type it all out (as per PF standards), but if you still insist on posting an image, at least work at making it usable.

I tried to go back and edit the post but was unable to. This link should work for the problem

http://s30.postimg.org/k3ksocech/scan.jpg

thanks for the heads up.
 
rossmoesis said:
I tried to go back and edit the post but was unable to. This link should work for the problem

http://s30.postimg.org/k3ksocech/scan.jpg

thanks for the heads up.

If x is negative, then you have an alternating series.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top