MHB Calculus inequality challenge prove ∫10f(x)/f(x+1/2)dx≥1

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $f$ be a positive and continuous function on the real line which satisfies $f(x + 1) = f(x)$ for all numbers $x$.
Prove \[\int_{0}^{1}\frac{f(x)}{f(x+\frac{1}{2})}dx \geq 1.\]
 
Mathematics news on Phys.org
Here is my solution.

Note $\int_0^{1/2} \frac{f(x)}{f(x + 1/2)}\, dx = \int_{1/2}^1 \frac{f(x + 1/2)}{f(x)}\, dx$ and $$\int_{1/2}^1 \frac{f(x)}{f(x + 1/2)}\, dx = \int_0^1 \frac{f(x + 1/2)}{f(x + 1)}\, dx = \int_0^{1/2} \frac{f(x + 1/2)}{f(x)}\, dx$$ Therefore
$$\int_0^1 \frac{f(x)}{f(x+1/2)}\, dx = \int_0^1 \frac{f(x+1/2)}{f(x)}\, dx$$ and consequently
$$\int_0^1 \frac{f(x)}{f(x+1/2)}\, dx = \frac{1}{2}\int_0^1 \left(\frac{f(x)}{f(x+1/2)} + \frac{f(x+1/2)}{f(x)}\right)\, dx \ge \frac{1}{2}\int_0^1 2\sqrt{\frac{f(x)}{f(x+1/2)}\cdot \frac{f(x+1/2)}{f(x)}}\, dx = 1$$
 
Euge said:
Here is my solution.

Note $\int_0^{1/2} \frac{f(x)}{f(x + 1/2)}\, dx = \int_{1/2}^1 \frac{f(x + 1/2)}{f(x)}\, dx$ and $$\int_{1/2}^1 \frac{f(x)}{f(x + 1/2)}\, dx = \int_0^1 \frac{f(x + 1/2)}{f(x + 1)}\, dx = \int_0^{1/2} \frac{f(x + 1/2)}{f(x)}\, dx$$ Therefore
$$\int_0^1 \frac{f(x)}{f(x+1/2)}\, dx = \int_0^1 \frac{f(x+1/2)}{f(x)}\, dx$$ and consequently
$$\int_0^1 \frac{f(x)}{f(x+1/2)}\, dx = \frac{1}{2}\int_0^1 \left(\frac{f(x)}{f(x+1/2)} + \frac{f(x+1/2)}{f(x)}\right)\, dx \ge \frac{1}{2}\int_0^1 2\sqrt{\frac{f(x)}{f(x+1/2)}\cdot \frac{f(x+1/2)}{f(x)}}\, dx = 1$$

Excellent, Euge! (Nod) Thankyou very much for your participation!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top