Calculus inequality challenge prove ∫10f(x)/f(x+1/2)dx≥1

Click For Summary
SUMMARY

The discussion centers on proving the inequality \(\int_{0}^{1}\frac{f(x)}{f(x+\frac{1}{2})}dx \geq 1\) for a positive and continuous function \(f\) that is periodic with period 1, satisfying \(f(x + 1) = f(x)\). The proof utilizes properties of periodic functions and integrals, establishing that the average value of the function over the interval is maintained despite the transformation. Participants express appreciation for the clarity of the solution presented.

PREREQUISITES
  • Understanding of integral calculus and properties of definite integrals
  • Familiarity with periodic functions and their characteristics
  • Knowledge of inequalities in calculus
  • Basic proficiency in mathematical notation and proofs
NEXT STEPS
  • Study the properties of periodic functions in depth
  • Explore advanced techniques in proving inequalities in calculus
  • Learn about the applications of integrals in analyzing function behavior
  • Investigate the implications of continuity in function analysis
USEFUL FOR

Mathematicians, calculus students, and educators interested in advanced integral inequalities and the behavior of periodic functions.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $f$ be a positive and continuous function on the real line which satisfies $f(x + 1) = f(x)$ for all numbers $x$.
Prove \[\int_{0}^{1}\frac{f(x)}{f(x+\frac{1}{2})}dx \geq 1.\]
 
Physics news on Phys.org
Here is my solution.

Note $\int_0^{1/2} \frac{f(x)}{f(x + 1/2)}\, dx = \int_{1/2}^1 \frac{f(x + 1/2)}{f(x)}\, dx$ and $$\int_{1/2}^1 \frac{f(x)}{f(x + 1/2)}\, dx = \int_0^1 \frac{f(x + 1/2)}{f(x + 1)}\, dx = \int_0^{1/2} \frac{f(x + 1/2)}{f(x)}\, dx$$ Therefore
$$\int_0^1 \frac{f(x)}{f(x+1/2)}\, dx = \int_0^1 \frac{f(x+1/2)}{f(x)}\, dx$$ and consequently
$$\int_0^1 \frac{f(x)}{f(x+1/2)}\, dx = \frac{1}{2}\int_0^1 \left(\frac{f(x)}{f(x+1/2)} + \frac{f(x+1/2)}{f(x)}\right)\, dx \ge \frac{1}{2}\int_0^1 2\sqrt{\frac{f(x)}{f(x+1/2)}\cdot \frac{f(x+1/2)}{f(x)}}\, dx = 1$$
 
Euge said:
Here is my solution.

Note $\int_0^{1/2} \frac{f(x)}{f(x + 1/2)}\, dx = \int_{1/2}^1 \frac{f(x + 1/2)}{f(x)}\, dx$ and $$\int_{1/2}^1 \frac{f(x)}{f(x + 1/2)}\, dx = \int_0^1 \frac{f(x + 1/2)}{f(x + 1)}\, dx = \int_0^{1/2} \frac{f(x + 1/2)}{f(x)}\, dx$$ Therefore
$$\int_0^1 \frac{f(x)}{f(x+1/2)}\, dx = \int_0^1 \frac{f(x+1/2)}{f(x)}\, dx$$ and consequently
$$\int_0^1 \frac{f(x)}{f(x+1/2)}\, dx = \frac{1}{2}\int_0^1 \left(\frac{f(x)}{f(x+1/2)} + \frac{f(x+1/2)}{f(x)}\right)\, dx \ge \frac{1}{2}\int_0^1 2\sqrt{\frac{f(x)}{f(x+1/2)}\cdot \frac{f(x+1/2)}{f(x)}}\, dx = 1$$

Excellent, Euge! (Nod) Thankyou very much for your participation!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K