Understanding the Role of Partial Derivatives in Calculus of Variations

Click For Summary
The discussion centers on the confusion surrounding the selection of specific partial derivatives in the context of the Euler-Lagrange equation within the calculus of variations. It explains that the action functional is interpreted through the integral involving the auxiliary function and its derivatives. The relationship between the chosen derivatives and the Euler-Lagrange equation is clarified, emphasizing the notation used to equate partial and total derivatives. The conversation concludes with a successful clarification that enables further progress on related problems. Understanding these concepts is crucial for effectively applying the calculus of variations.
samgrace
Messages
27
Reaction score
0
Hello, here is my problem.[/PLAIN]

http://imgur.com/VAu2sXl

My confusion lies in, why those particular partial derivatives are chosen to be acted upon the auxiliary function and then how they are put together to get the Euler-Lagrange equation?

My guess is that it's related to the turning points of the auxiliary equation, however i don't know why those derivatives are chosen and how they're related to the EL equation.

Sam
 
Last edited by a moderator:
Physics news on Phys.org
You must interpret ## \int_{a}^{b} 12x\cdot y(x)+\left(\frac{\partial}{\partial x} y(x)\right)^{2}dx## as your action functional ##S(t)## where the time is represented by ##t=x, q(t)=y(x), \frac{\partial}{\partial x} y(x)=\dot{q}(t)## and ##f(x,y,y')## is the lagrangian ##\mathcal{L}(t,q,\dot{q})##. In the example derivatives are alculated in order to write the Euler Lagrange equation:

## \frac{\partial}{\partial q}\mathcal{L}-\frac{d}{dt}\frac{\partial}{\partial \dot{q}}\mathcal{L}=\frac{\partial}{\partial y}f-\frac{d}{dx}\frac{\partial}{\partial z}f=0##

They used with abuse of notation ##\frac{\partial}{\partial x}=\frac{d}{dx}## so you solve the Euler Lagrange equation and obtain the extremal function ##y(x)##...

remember ##z=y'##, I hope in a clarification ...
 
Oh! Thanks, that's clarified the technique, I can do the rest of worksheet now.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K