Calculus tangent line problem.

Click For Summary
To find the equations of tangents to the graph f(x) = x^2 - 4x + 25 that pass through the origin, the derivative f'(x) = 2x - 4 is used to determine the slope at any point on the curve. The slope formula is applied with the origin (0,0) to establish the relationship between the tangent line and the function. After correcting initial mistakes, the equation x^2 - 4x + 25 = 2x^2 - 4x leads to the factorization (x - 5)(x + 5) = 0, yielding x = 5 and x = -5 as points of tangency. The final tangent line equations can be derived using the slope-point formula, confirming that the tangents pass through the origin. This process illustrates the method for finding tangent lines to a quadratic function.
CJSGrailKnigh
Messages
55
Reaction score
0
1. Find the equations of all tangents to the graph f(x) = x^2-4x + 25 that pass through the origin.
2. The relevant equations to my knowledge are the slope formula and f ' (x)
3. First I found the derivative using various rules to be f ' (x) = 2x - 4
after this i used the slope formula and my given point (0,0) to fill in this equation for slope
m = 0 - X^2 +4x - 25
0-x

I then simplified to this by canceling the negatives of the numerator and denominator and by then moving the denominator to the top by making the exponent a negative and then multiplied the trinomial by the monomial to get m = x +4 - (25/x)

after this I set m = f ' (x) in order to find the values of x where the tangent line will pass through (0,0).

I got -x-(25/x) = 0 however this function does not have any zeros and therefore can not be the equation I'm looking for because the slopes i should get according to the answer key are m = -14 and m = 6

Any help would be greatly appreciated.
 
Last edited:
Physics news on Phys.org
One small issue the derivative should be 2x-4 should it not?
 
ya i just copied my work wrong sorry.
 
The Answer is obtained in the way I had started however the two mistakes I made were first I should have done delta y as being : (x^2-4x+25) -0 and the delta x being x-0 then equating the derivative to the slop formula to get:

x^2-4x+25 = 2x-4
x

then cross multiplying to get:

x^2-4x+25 = 2x^2 - 4x or x^2-25 = 0

which is factored by difference of squares to be (x-5)(x+5) = 0 and therefore when x = 5 or -5 the line of tangency will pass through the origin and one can find the equations for the lines.
 
since m=f'(a)=2a-4, you could use the slope-point formula for a line, that is:

y-y_1=m(x-x_1) since the tangent passes through the origin that is one point on the tangent line is (0,0) so
y-0=f'(a)(x-0), from here

y=(2a-4)x, where a is any point on the graph.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
975
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
15
Views
2K
Replies
2
Views
1K