Camera drone and speed of air below it

  • Thread starter Thread starter hello478
  • Start date Start date
  • Tags Tags
    Air Drone Speed
AI Thread Summary
The discussion focuses on the physics of drone flight, specifically the forces acting on a drone during hovering and ascent. It highlights the calculation of resultant force, acceleration, and final speed, emphasizing the importance of clearly defining units and steps in calculations. There is confusion regarding the addition of the drone's mass to the mass of air it displaces, with a clarification that these should not be combined in that manner. The conversation also notes that while a hovering drone experiences balanced forces, it can ascend when the pilot increases propeller speed. Understanding the relationship between air mass, acceleration, and induced force is crucial for analyzing drone movement.
hello478
Messages
165
Reaction score
14
Homework Statement
image below
Relevant Equations
f=ma
my answer =
F = 1.6*9.81 - 1.2*9.81 = 3.924 N -> resultant force of the drone moving (weight minus the upward force)
M= 1.2kg , mass of drone
a= 3.31 m/s^2 , acceleration of drone
u=0 m/s , initial speed of drone
t=1s , time
v = 3.27 m/s, final speed of drone
and its not even in the options... 😶

1712081580688.png
 
Physics news on Phys.org
It is impossible to follow what you are actually trying to do in your attempt. Please write out units and explain what you are doing in each step.
 
Orodruin said:
It is impossible to follow what you are actually trying to do in your attempt. Please write out units and explain what you are doing in each step.
done
 
hello478 said:
F = 1.6*9.81 - 1.2*9.81
Where does 1.6kg come from? You seem to have added the mass of the drone to the mass of the air it pushes down in one second. In what way do those add? You can't add a mass to a mass per unit time.
If, instead, you had been told it pushes down 1440kg per hour, would you have done 1.2+1440?
 
You have a mass of air, m, accelerated to a velocity, v, in 1 s. What is the force associated with this?
 
hello478 said:
my answer =
F = 1.6*9.81 - 1.2*9.81 = 3.924 N -> resultant force of the drone moving (weight minus the upward force)
Note that the hovering drone is not moving in any direction.
Therefore, the resultant force in any direction must be null or zero.

The mass of air that each propeller accelerates downwards (from zero to the value of V that the problem is asking about), generates an upwards force.

Still, the drone does not move, because all the forces acting on it balance each other.

Hint:
Drones depart from the balanced condition of hovering and move upwards when the pilot simultaneously increases the rotational speed of all the propellers (via manipulation of the left lever of the remote control).

Could you tell what happens to the individual mass of air, its acceleration, and induced force in that case?

 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top