MHB Can $3^{2008}+4^{2009}$ be written as a product of two positive integers?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Product Sum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $3^{2008}+4^{2009}$ can be written as a product of two positive integers each of which is larger than $2009^{182}$.
 
Mathematics news on Phys.org
we have $3^{2008} + 4^{2009} = (3^{1004})^2 + (2^{2009})^2$
$= (3^{1004})^2 + (2^{2009})^2 + 2 * 3^{1004} * 2^{2009} - 2 * 3^{1004} * 2^{2009}$
$= ((3^{1004}) + (2^{2009}))^2 - 3^{1004} * 2^{2010}$
$= (3^{1004} + 2^{2009})^2 - (3^{502} * 2^{1005})^2$
$= (3^{1004} + 2^{2009} +3^{502} * 2^{1005}) (3^{1004} + 2^{2009} -3^{502} * 2^{1005})$

Let us consider the lower value
$(3^{1004} + 2^{2009} -3^{502} * 2^{1005})$
$=2^{2009} + 3^{502}(3^{502} - 2^{503})$

as $3^{502} = 9^{\frac{502}{2}} = 9^{251} > 8^{251} = 2^{251 * 3} = 2^{753} > 2^{502}$

so
$(3^{1004} + 2^{2009} -3^{502} * 2^{1005}) > 2^{[2009} = 2^{ 11 * 182+7} > (2^{11})^{182} = 2048 ^{182} > 2009 ^ {182}$

as lower term is $>2009^{182}$ so we are done
 
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
21K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K