MHB Can $3^{2008}+4^{2009}$ be written as a product of two positive integers?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Product Sum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $3^{2008}+4^{2009}$ can be written as a product of two positive integers each of which is larger than $2009^{182}$.
 
Mathematics news on Phys.org
we have $3^{2008} + 4^{2009} = (3^{1004})^2 + (2^{2009})^2$
$= (3^{1004})^2 + (2^{2009})^2 + 2 * 3^{1004} * 2^{2009} - 2 * 3^{1004} * 2^{2009}$
$= ((3^{1004}) + (2^{2009}))^2 - 3^{1004} * 2^{2010}$
$= (3^{1004} + 2^{2009})^2 - (3^{502} * 2^{1005})^2$
$= (3^{1004} + 2^{2009} +3^{502} * 2^{1005}) (3^{1004} + 2^{2009} -3^{502} * 2^{1005})$

Let us consider the lower value
$(3^{1004} + 2^{2009} -3^{502} * 2^{1005})$
$=2^{2009} + 3^{502}(3^{502} - 2^{503})$

as $3^{502} = 9^{\frac{502}{2}} = 9^{251} > 8^{251} = 2^{251 * 3} = 2^{753} > 2^{502}$

so
$(3^{1004} + 2^{2009} -3^{502} * 2^{1005}) > 2^{[2009} = 2^{ 11 * 182+7} > (2^{11})^{182} = 2048 ^{182} > 2009 ^ {182}$

as lower term is $>2009^{182}$ so we are done
 
Last edited by a moderator:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K