I Can a Black Hole be Destroyed by Electron Beam?

Click For Summary
Electrostatic repulsion between electrons is significantly stronger than their gravitational attraction, suggesting that a charged black hole (BH) would repel electrons rather than attract them. This repulsion could lead to increased Hawking Radiation, causing the BH to emit electrons as it evaporates. The electrons near the Event Horizon would radiate due to their acceleration from the electrostatic field, drawing energy from the diminishing mass of the BH. The discussion highlights the complexity of combining general relativity, quantum mechanics, and electromagnetism in this context. Overall, the interaction between charged particles and black holes raises intricate questions about radiation and energy sources.
Ilya B
Messages
2
Reaction score
0
TL;DR
Electrostatic repulsion of two electrons is about 4.2*10^42 stronger than their gravitational attraction, and is also mediated by massless carriers. Black holes preserve charge, and giving it even a moderate electric (negative) charge will result in BH repulsing electrons instead of attracting them.
Electrostatic repulsion of two electrons is about 4.17*10^42 stronger than their gravitational attraction, and is mediated by massless carriers. Black holes preserve charge, and charging a BH with even a moderate electric (negative) charge will result in BH repulsing electrons instead of attracting them.

Black will start evaporate hole by including intensified Hawking Radiation, shifted from equilibrium towards emitting electrons (lightest negatively charged particle). The electrons which levitate close to Event Horizon (due to equilibrium between Gravitational attraction and electrostatic repulsion) will radiate as accelerated particle. Levitating electrons might remain at the same place according to our external frame, but according to strong equivalence principle they are charges accelerated by electrostatic field, and therefore should radiate as an accelerated charge.

Where can they get energy for this radiation? Only from diminishing mass of the BH.
There are many questions to discuss here...
 
Last edited by a moderator:
Physics news on Phys.org
:welcome:

You seem to be mixing a number of different physical theories: GR, GR with QM effects (Hawking radiation) and classical Electromagnetism. Perhaps someone can disentangle what you've written and give you a suitable answer, but it looks like a bit of a muddle to me.

PS unless you are a postgraduate physics student, then an "A" level thread is not appropriate. I suggest that "I" level might be more appropriate. [Mentors' note: noted and changed]
 
Last edited by a moderator:
  • Like
Likes Vanadium 50
Ilya B said:
but according to strong equivalence principle they are charges accelerated by electrostatic field, and therefore should radiate as an accelerated charge...Where can they get energy for this radiation?

You don't need a black hole to pose this question; we could just as easily ask the same question about a charged particle at rest on the surface of the Earth and therefore experiencing 1g of constant proper acceleration. Whether and how a particle radiates under these conditions is a fairly involved topic - we have some older threads and a google search will find a fair amount of discussion.
 
Nugatory said:
You don't need a black hole to pose this question; we could just as easily ask the same question about an charged particle at rest on the surface of the Earth and therefore experiencing 1g of contants proper acceleration. Whether and how a particle radiates under these conditions is a fairly involved topic - we have some older threads and a google search will find a fair amount of discussion.
That was a rhetorical question. If we have an electron which experiences the gravitational attraction, but does not free-fall due to electrostatic repulsion, it is an accelerated charge. And as an accelerated charge it radiates. There is no other source of energy for this radiation except for the black hole itself.
 
  • Skeptical
Likes weirdoguy and PeroK
Last edited:
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 73 ·
3
Replies
73
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
4
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
4K