Can a hypothetical atom be made out of positrons and electrons ?

Click For Summary
SUMMARY

This discussion centers on the hypothetical creation of an atom composed of positrons and electrons, where positrons replace protons. The proposal suggests that such an atomic model could achieve mass symmetry, potentially impacting energy and entropy within the system. However, participants clarify that positrons do not exhibit the strong nuclear force necessary to form a nucleus, making the concept unrealistic. The consensus is that while the idea is intriguing, it fundamentally contradicts established physical laws.

PREREQUISITES
  • Understanding of particle physics, specifically the roles of protons, electrons, and positrons.
  • Knowledge of the strong nuclear force and its significance in atomic structure.
  • Familiarity with concepts of mass, energy, and entropy in physical systems.
  • Basic comprehension of antimatter and its properties, including positronium and antihydrogen.
NEXT STEPS
  • Research the properties and interactions of positronium as a bound state of an electron and a positron.
  • Explore the characteristics of antihydrogen and its implications for antimatter studies.
  • Study the strong nuclear force and its role in atomic stability and structure.
  • Investigate theoretical models of atomic structure that challenge conventional physics.
USEFUL FOR

Students of physics, researchers in particle physics, and anyone interested in the theoretical implications of antimatter and atomic models.

scythe327
Messages
4
Reaction score
0
TL;DR
What would be the measurable changes in the properties of the atom except mass ,if positrons are present in the place of protons(considering the hypothetical case that positrons are stable) and if so what are the changes and also is it really possible to create such hypothetical atom in real world.
I am a Computer Science Engineering student at a local university in India and I was really moved by the CERN youtube channel and it got me curious about the particles like electrons and protons, I love symmetry in nature and was not a huge fan of proton being nearly 2000 times the mass of electron possessing the same charge (Not that my opinion matters),I did some reading and found out about the quarks and virtual photons interactions that gives protons its charge , as i mentioned earlier , the love for symmetry made me wonder
we could develop a novel atomic model that suggests the possibility of creating an atom with protons and electrons having equal masses. In this model, we propose utilizing anti-electrons (positrons) as the "protons" in the atom, which share the same mass as electrons but possess a positive charge.

By considering this hypothetical scenario, where the masses of protons and electrons are equal, I envision significant implications for energy and entropy within the system. This concept is rooted in the notion that lower mass particles may result in lower entropy, potentially leading to enhanced efficiency and novel behaviors within the atom.

I do know that mass and entropy are not directly related but I wanted know what happens if we replace the protons with an anti-electron (positron) considering the hypothetical case where positrons are stable for the same amount of time as the protons.
 
Physics news on Phys.org
scythe327 said:
TL;DR Summary: What would be the measurable changes in the properties of the atom except mass ,if positrons are present in the place of protons(considering the hypothetical case that positrons are stable) and if so what are the changes and also is it really possible to create such hypothetical atom in real world.

I was really moved by CERN's youtube channel and it got me curious about the particles like electrons and protons, I love symmetry in nature and was not a huge fan of proton being nearly 2000 times the mass of electron possessing the same charge (Not that my opinion matters),I did some reading and found out about the quarks and virtual photons interactions that gives protons its charge , as i mentioned earlier , the love for symmetry made me wonder
we could develop a novel atomic model that suggests the possibility of creating an atom with protons and electrons having equal masses. In this model, we propose utilizing anti-electrons (positrons) as the "protons" in the atom, which share the same mass as electrons but possess a positive charge.

By considering this hypothetical scenario, where the masses of protons and electrons are equal, I envision significant implications for energy and entropy within the system. This concept is rooted in the notion that lower mass particles may result in lower entropy, potentially leading to enhanced efficiency and novel behaviors within the atom.

I do know that mass and entropy are not directly related but I wanted know what happens if we replace the protons with an anti-electron (positron) considering the hypothetical case where positrons are stable for the same amount of time as the protons.
If achieved by what factor will a 1 cm^3 of resulted material be comparable to the normal (proton- electron) in terms of mass.

You can't have positrons that mass the same as protons, so you can't try to put them in the nucleus.

I think what you're grappling toward is bog-standard antimatter.: anti-protons in the nucleus, surrounded by positron orbitals.

1687199892341.png


(Look past the quaint oldy-timey "electrons in orbits" model...)
 
  • Like
Likes   Reactions: scythe327
scythe327 said:
TL;DR Summary: What would be the measurable changes in the properties of the atom except mass ,if positrons are present in the place of protons(considering the hypothetical case that positrons are stable) and if so what are the changes and also is it really possible to create such hypothetical atom in real world.
https://en.wikipedia.org/wiki/Positronium

https://en.wikipedia.org/wiki/Antihydrogen

The positron is as stable as its anti-particle, the electron.
 
  • Like
Likes   Reactions: Demystifier and ohwilleke
You need nuclear forces to create a nucleus. A positron does not feel them so this is not a realistic idea.
 
DaveC426913 said:
You can't have positrons that mass the same as protons, so you can't try to put them in the nucleus.

I think what you're grappling toward is bog-standard antimatter.: anti-protons in the nucleus, surrounded by positron orbitals.
Thank you for the reply , this is my first thread ,I wanted to know what happens to the electrons that are in orbitals around the new nucleus (positrons+nutrons) , how will the electron react to the change in the mass of the nucleus ,since the positron will have the same charge so the over all electronic interactions will remain the same.
 
scythe327 said:
Thank you for the reply , this is my first thread ,I wanted to know what happens to the electrons that are in orbitals around the new nucleus (positrons+nutrons) , how will the electron react to the change in the mass of the nucleus ,since the positron will have the same charge so the over all electronic interactions will remain the same.
As in your other thread, the proton and neutron are composed of three quarks each and exhibit the strong nuclear force, allowing them to form a nucleus. The positron does not exhibit the strong nuclear force: it's an anti-electron and interacts only electromagnetically.
 
  • Like
Likes   Reactions: ohwilleke and scythe327
Frabjous said:
You need nuclear forces to create a nucleus. A positron does not feel them so this is not a realistic idea.
ohhhhhhh....yah now i get it , thank you for the reply, this helped a lot , but hypothetically considering that those interactions are feasible would the change in the mass of the new nucleus(positron +neutrons) affects its stability ,chemical properties and orbitals of electrons ?
 
ohhhhhhh....yah now i get it , thank you for the reply, this helped a lot , but hypothetically considering that those interactions are feasible would the change in the mass of the new nucleus(positron +neutrons) affects its stability ,chemical properties and orbitals of electrons ?
 
scythe327 said:
PeroK said:
The positron does not exhibit the strong nuclear force
...hypothetically considering that those interactions are feasible...
You're asking what would happen if we throw away the laws of physics we know and substitute made-up ones.

The standard answer for that is: Unicorns. You'd get unicorns.

If we can make up laws to suit our desires, then why wouldn't we have unicorns? :wink:
 
  • Like
Likes   Reactions: AlexB23, phinds and ohwilleke
  • #10
scythe327 said:
hypothetically considering that those interactions are feasible would the change in the mass of the new nucleus(positron +neutrons) affects its stability ,chemical properties and orbitals of electrons ?
As @DaveC426913 has pointed out, you can't hypothesize something that violates the laws of physics.

The reference on positronium already given has a good overview of what an electron-positron bound system is like. It is not like "an atom with a positron instead of a proton". So if what you were looking for was "an atom with a positron instead of a proton", then there is no such thing: it can't exist.

And with that, this thread is closed.
 
  • Like
Likes   Reactions: Bystander and PeroK

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 15 ·
Replies
15
Views
7K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
491
  • · Replies 10 ·
Replies
10
Views
6K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 9 ·
Replies
9
Views
952
  • · Replies 1 ·
Replies
1
Views
3K