MHB Can a sequence without a convergent subsequence have a limit of infinity?

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Let (xn)n be a sequence of positive real numbers that has no convergent subsequence. Prove that lim(n→∞) x of n=+∞. What if the xn are permitted to take both positive and negative values?

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
Each bounded sequence has a convergent subsequence, so $x_n$ has no convergent subsequence implies that $x_n$ is not bounded. In this case, $x_n\to +\infty$ if $x_n$ is a sequence of positive real numbers and $\left|x_n\right|\to +\infty$ if the $x_n$ are permitted to take both positive and negative values.
 
Fernando Revilla said:
Each bounded sequence has a convergent subsequence, so $x_n$ has no convergent subsequence implies that $x_n$ is not bounded. In this case, $x_n\to +\infty$ if $x_n$ is a sequence of positive real numbers and $\left|x_n\right|\to +\infty$...

The fact that the positive term sequence $x_{n}$ is unbounded doesn't mean that $\displaystyle \lim_{n \rightarrow \infty} x_{n} = + \infty$. As example You can consider the sequence $\displaystyle x_{n} = |\tan n|,\ n \ge 1$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The fact that the positive term sequence $x_{n}$ is unbounded doesn't mean that $\displaystyle \lim_{n \rightarrow \infty} x_{n} = + \infty$. As example You can consider the sequence $\displaystyle x_{n} = |\tan n|,\ n \ge 1$...

Right, my fault, I was thinking about a monotic sequence.
 
The negation of $\lim_{n\to\infty}x_n=\infty$ says that $x_n$ has a bounded subsequence and therefore a convergent sub-subsequence.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top