MHB Can a Triangle with Prime Number Sides Have a Whole Number Area?

Click For Summary
A triangle with sides that are prime numbers cannot have a whole number area. This conclusion is supported by the application of Heron's formula, which calculates the area based on the triangle's side lengths. The formula reveals that the area will always result in a non-integer value when the sides are prime. Additionally, the properties of prime numbers and their combinations further reinforce this outcome. Therefore, it is mathematically proven that such triangles cannot yield a whole number area.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Prove that if the sides of a triangle are prime numbers its area cannot be whole number.
 
Mathematics news on Phys.org
kaliprasad said:
Prove that if the sides of a triangle are prime numbers its area cannot be whole number.
View attachment 3168

From both forms, the RHS is odd if no side length is 2.
If only one side is 2, the RHS still does not yield the factor of value 16 required by the LHS.
 

Attachments

  • Capture.PNG
    Capture.PNG
    3.3 KB · Views: 97
Let the sides be $a,b, c$ and $a \le b\le c$

now there are 2 cases

$a = 2$ or all are odd
if A is area then $A^2 = \dfrac{( a+b-c)(a+b+c)(a-b+c)(b+c-a)}{4}$if all are odd then all 4 terms on the numerator of RHS are odd then $A^2$ cannot be integer so A cannot be whole number

case 2:
for $a= 2$ and $b = 2$ or $a= 2$ and $b != 2$

$a = 2\, b =2 \, => c = 2\, or\, 3$

$a =2\, b = 2\, c = 2 => A^2 = \dfrac{6*2^3}{4} = 12$ so A is not integer

$a =2\ , b= 2\, c = 3 => A^2 = \dfrac{7 * 1 * 3 * 3}{4}=\dfrac{3^2*7}{2^2}$ so A is not integerif $b\ne 2$ then $b= c$ because if $c \gt b$ then $c\ge b+2$ or $a+b\le c$

so we get $A^2 = \dfrac{(2+2b)* (2b-2)* b^2}{4}= \dfrac{b^2(b^2-1)}{4}$ cannot be a perfect squareso no solution
 
Last edited:

Similar threads

  • · Replies 20 ·
Replies
20
Views
4K
Replies
10
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K