MHB Can a Triangle with Prime Number Sides Have a Whole Number Area?

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Prove that if the sides of a triangle are prime numbers its area cannot be whole number.
 
Mathematics news on Phys.org
kaliprasad said:
Prove that if the sides of a triangle are prime numbers its area cannot be whole number.
View attachment 3168

From both forms, the RHS is odd if no side length is 2.
If only one side is 2, the RHS still does not yield the factor of value 16 required by the LHS.
 

Attachments

  • Capture.PNG
    Capture.PNG
    3.3 KB · Views: 93
Let the sides be $a,b, c$ and $a \le b\le c$

now there are 2 cases

$a = 2$ or all are odd
if A is area then $A^2 = \dfrac{( a+b-c)(a+b+c)(a-b+c)(b+c-a)}{4}$if all are odd then all 4 terms on the numerator of RHS are odd then $A^2$ cannot be integer so A cannot be whole number

case 2:
for $a= 2$ and $b = 2$ or $a= 2$ and $b != 2$

$a = 2\, b =2 \, => c = 2\, or\, 3$

$a =2\, b = 2\, c = 2 => A^2 = \dfrac{6*2^3}{4} = 12$ so A is not integer

$a =2\ , b= 2\, c = 3 => A^2 = \dfrac{7 * 1 * 3 * 3}{4}=\dfrac{3^2*7}{2^2}$ so A is not integerif $b\ne 2$ then $b= c$ because if $c \gt b$ then $c\ge b+2$ or $a+b\le c$

so we get $A^2 = \dfrac{(2+2b)* (2b-2)* b^2}{4}= \dfrac{b^2(b^2-1)}{4}$ cannot be a perfect squareso no solution
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top