MHB Can a Triangle with Prime Number Sides Have a Whole Number Area?

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Prove that if the sides of a triangle are prime numbers its area cannot be whole number.
 
Mathematics news on Phys.org
kaliprasad said:
Prove that if the sides of a triangle are prime numbers its area cannot be whole number.
View attachment 3168

From both forms, the RHS is odd if no side length is 2.
If only one side is 2, the RHS still does not yield the factor of value 16 required by the LHS.
 

Attachments

  • Capture.PNG
    Capture.PNG
    3.3 KB · Views: 95
Let the sides be $a,b, c$ and $a \le b\le c$

now there are 2 cases

$a = 2$ or all are odd
if A is area then $A^2 = \dfrac{( a+b-c)(a+b+c)(a-b+c)(b+c-a)}{4}$if all are odd then all 4 terms on the numerator of RHS are odd then $A^2$ cannot be integer so A cannot be whole number

case 2:
for $a= 2$ and $b = 2$ or $a= 2$ and $b != 2$

$a = 2\, b =2 \, => c = 2\, or\, 3$

$a =2\, b = 2\, c = 2 => A^2 = \dfrac{6*2^3}{4} = 12$ so A is not integer

$a =2\ , b= 2\, c = 3 => A^2 = \dfrac{7 * 1 * 3 * 3}{4}=\dfrac{3^2*7}{2^2}$ so A is not integerif $b\ne 2$ then $b= c$ because if $c \gt b$ then $c\ge b+2$ or $a+b\le c$

so we get $A^2 = \dfrac{(2+2b)* (2b-2)* b^2}{4}= \dfrac{b^2(b^2-1)}{4}$ cannot be a perfect squareso no solution
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top