MHB Can a vector space also be a set?

Click For Summary
A vector space is indeed a specific type of set that includes an algebraic structure, allowing for operations like addition and scalar multiplication. While a set can exist independently, it does not inherently possess the properties required to be classified as a vector space. For example, the set of polynomials of degree 2 can be considered a vector space if it supports linear combinations. Additionally, there are various other mathematical structures, such as groups and rings, that differ from vector spaces. Understanding these distinctions is crucial for grasping the broader landscape of mathematical concepts.
ognik
Messages
626
Reaction score
2
Wiki says "A vector space is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars in this context." To me the term (linear) Vector Space has always seemed a little mysterious ... how far wrong would I be in thinking of a vector space as a set? For example if it was the vector space of polynomials of degree 2, could I also say the set of polynomials of degree 2 (or lower of course)?

If not, what is superior about a Vector Space as opposed to a set?
 
Physics news on Phys.org
A vector space is a set, combined with an algebraic structure. A mere set does not satisfy a vector space properties. Whenever a set has certain operations defined on it and behave in a certain way, it is called a vector space. :)
 
Thanks Fantini. So if I have a set of vectors and I say they can be linearly combined, then I have a linear vector space?

I suppose there are mathematical spaces that have other than vectors? And other than linear algebra associated?
 
ognik said:
Thanks Fantini. So if I have a set of vectors and I say they can be linearly combined, then I have a linear vector space?

I suppose there are mathematical spaces that have other than vectors? And other than linear algebra associated?
If you have a set and they can be linearly combined, then they are vectors because they live in a set that is a linear vector space. :) You can only call them vectors if you have a vector space.

There are other mathematical structures different from vector space. You can have a group, a monoid, a module, a ring, a field...there are ample possibilities (though I don't know enough to explain them in detail).
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K