MHB Can All Linear Diophantine Equations Be Solved?

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Linear
Guest2
Messages
192
Reaction score
0
Decide which of the following equations are true or false. If false, explain/provide a counterexample.

(a) If $a, b \in \mathbb{Z}$ are relatively prime, then $ax+by = N$ has integer solutions for any integer $N$.
(b) The equation $70x+42y = 1409$ has integer solutions
(c) The equation $70x+42y = 1428$ has integer solutions
(d) The equation $2016x+4031y = 2014201520162017$ has integer solutions.

I think (a) is true since relativity prime means $\gcd(a, b) = 1$ and $1|N$.
 
Last edited:
Mathematics news on Phys.org
(b) $\gcd(70, 42) = 14$ which does not divide the RHS, so it has integer no solutions.
(c) $\gcd(70, 42) = 14$ which divides the RHS, so it has integer solutions.
(d) $\gcd(2016,4031) = 1$ which clearly divides the RHS so it has integer solutions.

Could someone please verify whether this is correct?
 
Last edited:
Guest said:
(b) $\gcd(70, 42) = 14$ which does not divide the RHS, so it has integer no solutions.
(c) $\gcd(70, 42) = 14$ which divides the RHS, so it has integer solutions.
(d) $\gcd(2016,4031) = 1$ which clearly divides the RHS so it has integer solutions.

Could someone please verify whether this is correct?

all including for (a) specified in 1st post correct
 
kaliprasad said:
all including for (a) specified in 1st post correct
Thanks. Is there a quicker way to do these questions, perhaps using something like modular arithmetic?
 
Guest said:
Thanks. Is there a quicker way to do these questions, perhaps using something like modular arithmetic?

(b) can be done quicker, for instance mod 2.
More specifically, the left hand side is even, while the right hand side is odd.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top