MHB Can All Roots of a Quartic Polynomial Be Real?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Polynomial Root
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a$ and $b$ be real numbers such that $a\ne 0$. Prove that not all the roots of $ax^4+bx^3+x^2+x+1=0$ can be real.
 
Mathematics news on Phys.org
Between each pair of real roots of a polynomial there must be a root of the derivative.

Let $x_1,x_2,x_3,x_4$ be the roots of $ax^4+bx^3+x^2+x+1$. Replacing $x$ by $\frac1x$, it follows that $\frac1{x_1},\frac1{x_2},\frac1{x_3},\frac1{x_4}$ are the roots of $p(x) = x^4 + x^3 + x^2 + bx + a$. The second derivative of $p(x)$ is $p''(x) = 12x^2 + 6x + 2$, which has no real roots. So $p'(x)$ can have only one real root, and $p(x)$ has at most two real roots. Therefore at most two of $x_1,x_2,x_3,x_4$ are real.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top