MHB Can an entire function with exponential growth have bounded derivatives?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
An entire function F with exponential growth bounded by O(exp(|z|^t)) as |z| approaches infinity can have its derivatives bounded by a specific formula. It is established that there exists a constant M such that for sufficiently large n, the magnitude of the n-th derivative at zero, |F^(n)(0)|, is limited by Mn! * (et/n)^(n/t). The discussion highlights the implications of this result on the behavior of entire functions and their derivatives. GJA provided a correct solution to the problem presented. This analysis contributes to the understanding of the growth rates of entire functions and their derivatives.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $F$ be an entire function for which there exists $t > 0$ such that $\lvert F(z)\rvert = O(\exp(\lvert z\rvert^t))$ as $\lvert z\rvert \to \infty$. Show that there is a constant $M > 0$ such that for all $n$ sufficiently large, $$\lvert F^{(n)}(0)\rvert \le Mn!\left(\frac{et}{n}\right)^{n/t}$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was solved correctly by GJA. Here is his solution.
Since $F$ is entire, we can apply Cauchy's inequalities to disks of arbitrary radius centered about the origin to obtain

$\left|F^{(n)}(0)\right|\leq \dfrac{n!\|F\|_{C}}{R^{n}},$

where $\|F\|_{C}=\sup_{z\in C}|F(z)|$ denotes the supremum of $|F|$ on the boundary circle - $C$ - of the disk centered at the origin with radius $R$.

From the order condition on $f$, there is $N\in\mathbb{N}$ such that $|F(z)|\leq M\exp{\{|z|^{t}\}}$ for all $|z|\geq \left(\dfrac{N}{t}\right)^{1/t}$.

Now fix $n\geq N,$ set $R=\left(\dfrac{n}{t}\right)^{1/t},$ and consider the disk centered about the origin of radius $R$. Applying the above considerations, we have

\begin{align*}
\left|F^{(n)}(0)\right|&\leq \dfrac{n!\|F\|_{C}}{R^{n}}\\
&\leq Mn!\left(\dfrac{t}{n}\right)^{n/t}\|\exp\{|z|^{t}\}\|_{C}\\
&=Mn!\left(\dfrac{t}{n}\right)^{n/t}e^{n/t}\\
&=Mn!\left(\dfrac{et}{n}\right)^{n/t},
\end{align*}

thereby establishing the result for all sufficiently large $n.$