MHB Can an Upper Bound Be Determined for This Infinite Series?

  • Thread starter Thread starter bincy
  • Start date Start date
Click For Summary
The discussion centers on finding an upper bound for the infinite series involving the expression $\sum_{k=1}^{\infty} \frac{r^{kb}}{(1-r^{k+1})^{a}-(1-r^{k})^{a}}$, where $b>1$ and $0<r,a<1$. Participants explore whether an upper bound can be established for a simplified version of the series, specifically $\sum_{k=1}^{\infty} \frac{1}{(1-r^{k+1})^{a}-(1-r^{k})^{a}}$. A key point raised is that the series $\sum_{k=1}^{\infty} ((1-r^{k+1})^{a}-(1-r^{k})^{a})$ cancels iteratively, potentially simplifying the analysis. Additionally, a reference to the binomial expansion $(1+x)^{a}$ is introduced as a tool that may aid in deriving the upper bound. The conversation highlights the complexity of determining bounds in such series.
bincy
Messages
38
Reaction score
0
Hi all,

Can I get an upper bound of the below expression in terms of $\textbf{all } r,v,b$?

$\displaystyle \sum_{k=1}^{\infty}
\quad
\frac{r^{kb}}{\left(1-r^{k+1}\right)^{a}-\left(1-r^{k}\right)^{a}}
\quad : b>1
, 0<r,a<1$

Can we atleast obtain an upper bound for $\sum_{k=1}^{\infty}
\quad
\frac{1}{\left(1-r^{k+1}\right)^{a}-\left(1-r^{k}\right)^{a}}
$ ?Please Note that $\sum_{k=1}^{\infty}
\quad
\left(1-r^{k+1}\right)^{a}-\left(1-r^{k}\right)^{a}
$ iteratively cancels up, leaving a single term. (Don't know if it is useful)

Kind regards,
bincy
 
Last edited:
Physics news on Phys.org
bincybn said:
Hi all,

Can I get an upper bound of the below expression in terms of $\textbf{all } r,v,b$?

$\displaystyle \sum_{k=1}^{\infty}
\quad
\frac{r^{kb}}{\left(1-r^{k+1}\right)^{a}-\left(1-r^{k}\right)^{a}}
\quad : b>1
, 0<r,a<1$

Can we atleast obtain an upper bound for $\sum_{k=1}^{\infty}
\quad
\frac{1}{\left(1-r^{k+1}\right)^{a}-\left(1-r^{k}\right)^{a}}
$ ?Please Note that $\sum_{k=1}^{\infty}
\quad
\left(1-r^{k+1}\right)^{a}-\left(1-r^{k}\right)^{a}
$ iteratively cancels up, leaving a single term. (Don't know if it is useful)

Kind regards,
bincy

Hi bincybn! :)

Did you know that $(1+x)^a = 1 + \binom a 1 x + \binom a 2 x^2 + ...$?
This applies even if $a$ is a non-integer number, in which case $\binom a k$ is exactly what you would expect of it.
It's not quite an answer to your upper bound, but it is a step in its direction.
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K