Can Any Complex Matrix Be Decomposed into Hermitian and Skew-Hermitian Parts?

Click For Summary

Discussion Overview

The discussion revolves around the decomposition of a complex matrix into its Hermitian and skew-Hermitian parts. Participants explore the mathematical properties and implications of this decomposition, seeking clarification and deeper understanding of the underlying concepts.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Technical explanation

Main Points Raised

  • One participant proposes a decomposition of a non-Hermitian matrix C into Hermitian and skew-Hermitian components, suggesting a formula involving the matrix and its conjugate transpose.
  • Another participant questions the clarity of the problem and suggests investigating the properties of the resulting matrices from the decomposition.
  • A third participant confirms the correctness of the decomposition and notes the special properties of Hermitian and skew-Hermitian matrices, while expressing confusion over the original formula's presentation.
  • Further, a participant draws a parallel between the matrix decomposition and a similar expression for complex numbers, indicating a broader applicability of the concept.
  • One participant presents a theory regarding the nature of the skew-Hermitian and Hermitian matrices derived from the decomposition, providing mathematical justification for their properties.

Areas of Agreement / Disagreement

Participants generally agree on the validity of the decomposition into Hermitian and skew-Hermitian parts, but there are varying opinions on the clarity and presentation of the original problem. Some participants express confusion regarding the notation used in the formula.

Contextual Notes

Participants mention the potential for confusion in the presentation of the decomposition formula and draw connections to similar mathematical concepts, indicating that the discussion may involve assumptions about the audience's familiarity with matrix properties.

ognik
Messages
626
Reaction score
2
If C NOT Hermitian, show we can decompose C into $\frac{1}{2}\left( C + {C}^{\dagger} \right) +\frac{1}{2i}i\left( C- {C}^{\dagger} \right) $

I've managed to prove C = C a couple of times, EG taking Hermitian or conjugate of both sides, probably there is a bit of info I am not thinking of or missing altogether, a hint please?
 
Physics news on Phys.org
ognik said:
If C NOT Hermitian, show we can decompose C into $\frac{1}{2}\left( C + {C}^{\dagger} \right) +\frac{1}{2i}i\left( C- {C}^{\dagger} \right) $

I've managed to prove C = C a couple of times, EG taking Hermitian or conjugate of both sides, probably there is a bit of info I am not thinking of or missing altogether, a hint please?

I'm guessing there's a bit more to this problem. That the RHS equals the LHS you've probably already shown, as indicated by your statement that you've proved "C = C a couple of times". I'm guessing the problem wants you to investigate the first matrix, $(C+C^{\dagger})/2$, and the second matrix, $(C-C^{\dagger})/2$, a bit more closely. What are their properties?
 
I had, but on second looks, it seems ridiculously easy...

Let $H(C)=\frac{1}{2}(C+C^{\dagger}) $, then $H^{\dagger}=\frac{1}{2}(C^{\dagger}+C) = H$

Similarly $S(C)^{\dagger}= -S$

I remember similar expressions for symmetric Matrices (same proof?) isn't there a similar formula for complex numbers?

...and why do they show the formula for C with $\frac{1}{2i}i$?
 
Exactly - you've got it. So, the moral of the story is that you can write any (square) matrix as the sum of an Hermitian matrix, and a skew-Hermitian matrix. These two kinds of matrices have special properties that are nice to work with in certain circumstances.

I have no idea why they didn't just write
$$C=\frac12\left(C+C^{\dagger}\right)+\frac12\left(C-C^{\dagger}\right).$$
Probably to confuse the newbie. ;)
 
This book excels at that :confused: suppose it gives the neurons more exercise. (Can't imagine why the Uni didn't use the latest edition...)

The other formula I was thinking of is $ z = \frac{1}{2}(z+z^*) + \frac{1}{2i}(z-z^*) $, real + imag component, even easier to prove
 
This is my theory (as to the form of the decomposition):

$(C - C^{\dagger})^{\dagger} = -(C - C^{\dagger})$ is skew-Hermitian, whereas:

$(i(C - C^{\dagger}))^{\dagger} = (-i)(-(C - C^{\dagger})) = i(C - C^{\dagger})$ is Hermitian.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
15K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K