I read from a book and claim that for any hermitian matrix can be diagonalized by a unitary matrix whose columns represent a complete set of its normalized eigenvectors. It then given an equation:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\mathbf{\left|A\right|=\left|U\right|\left|\Lambda\right|\left|U^{\dagger}\right|}=\lambda_{1}\lambda_{2}\ldots\lambda_{M} \qquad \qquad (1)[/tex]

Let [tex]\mathbf{A}[/tex] be a [tex]M\times M [/tex] hermitian matrix , and [tex]\lambda_{i}, \lambda_{2}, \ldots, \lambda_{M}[/tex] and [tex]\mathbf{u_{1},\, u_{2},\,\ldots\, u_{M}} [/tex]represent its eigenvalues and an orthonormal set of eigenvectors.

[tex]\mathbf{\Lambda=}diag\left[\lambda_{1},\lambda_{2},\ldots,\lambda_{M}\right][/tex]

and

[tex]\mathbf{U=[u_{1},u_{2},\ldots,u_{M}]}[/tex]

[tex]\mathbf{U^{\dagger}}[/tex] represent the complex conjugate transpose of U.

I failed to proof it in MATLAB.

I have

A =

1.5000 2.5000 3.5000 4.5000 5.5000

2.5000 1.5000 2.5000 3.5000 4.5000

3.5000 2.5000 1.5000 2.5000 3.5000

4.5000 3.5000 2.5000 1.5000 2.5000

5.5000 4.5000 3.5000 2.5000 1.5000

>> [U lamda] = eig(A)

U =

0.6015 -0.4703 -0.3717 0.1777 0.4973

0.3717 0.2490 0.6015 -0.5125 0.4187

-0.0000 0.6586 0.0000 0.6414 0.3936

-0.3717 0.2490 -0.6015 -0.5125 0.4187

-0.6015 -0.4703 0.3717 0.1777 0.4973

lamda =

-5.2361 0 0 0 0

0 -1.6080 0 0 0

0 0 -0.7639 0 0

0 0 0 -0.5558 0

0 0 0 0 15.6638

The middle of Equation (1) equal to

abs(U)*abs(lamda)*abs(U')

ans =

6.2463 4.8416 3.6267 4.8416 6.2463

4.8416 3.9914 3.0274 3.9914 4.8416

3.6267 3.0274 3.3521 3.0274 3.6267

4.8416 3.9914 3.0274 3.9914 4.8416

6.2463 4.8416 3.6267 4.8416 6.2463

it does not equal to the right handside of Equation 1:

prod(diag(lamda))

ans =

56.0000

I think I must made a stupid error somewhere but can't see it myself at the moment, someone can help me

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Eigenvalue question, hermitian matrix

Loading...

Similar Threads for Eigenvalue question hermitian |
---|

A Eigenvalues and matrix entries |

A Eigenvalue Problem and the Calculus of Variations |

I Eigenvalues of Circulant matrices |

I Eigenvalues of block matrices |

A Numerically Calculating Eigenvalues |

**Physics Forums | Science Articles, Homework Help, Discussion**