Can anyone check if my answer for this ODE is correct?

  • Thread starter Thread starter ronaldor9
  • Start date Start date
  • Tags Tags
    Ode
ronaldor9
Messages
91
Reaction score
1

Homework Statement


(x+2y-4)\,dx - (2x-4y)\,dy=0

The Attempt at a Solution


My answer,
\mathrm{ln}[4(y-1)^2+(x-2)^2] + 2\mathrm{arctan}\frac{x-2}{2y-2}=C
Textbook's answer,
\mathrm{ln}[4(y-1)^2+(x-2)^2] - 2\mathrm{arctan}\frac{2y-2}{x-2}=C
 
Last edited:
Physics news on Phys.org
Hi ronaldor9! :smile:

tan(a) = 1/tan(π/2 - a), so theyr'e the same, except for a constant :wink:

what were the initial conditions?
 
Hey, sorry i meant to place a constant instead of the zero.
Does that identity work for arctan?
 
ronaldor9 said:
Hey, sorry i meant to place a constant instead of the zero.
Does that identity work for arctan?

oh come on

if tan(a) = 1/tan(π/2 - a),

then putting T = tan(a) gives 1/T = tan(π/2 - a),

so arctanT = a = π/2 - arctan(1/T)
 
Thanks! tiny-tim
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top