Can anyone please review/verify this proof of greatest common divisor?

Math100
Messages
813
Reaction score
229
Homework Statement
Prove that the greatest common divisor of two positive integers divides their least common multiple.
Relevant Equations
None.
Proof: Suppose gcd(a, b)=d.
Then we have d##\mid##a and d##\mid##b for some a, b##\in## ##\mathbb{Z}##.
This means a=md and b=nd for some m, n##\in## ##\mathbb{Z}##.
Now we have lcm(a, b)=##\frac{ab}{gcd(a, b)}##
=##\frac{(md)(nd)}{d}##
=dmn
=dk,
where k=mn is an integer.
Thus, d##\mid##lcm(a, b), and so gcd(a, b)##\mid##lcm(a, b).
Therefore, the greatest common divisor of two positive integers divides their least common multiple.
 
Physics news on Phys.org
Seems sufficient. Note that the LCM is also basically a multiplication of unique prime factors, for lack of a better phrasing. Take 12 and 28, for example. One is 2*2*3, and the other is 2*2*7. So you end up with 2*2*3*7 as the LCM. The GCD, on the other hand, is prime factors in common, so I this example, 2*2, which are exactly the duplicate factors that get extracted from the LCM, but they must necissarily exist in the LCM.
 
valenumr said:
Seems sufficient. Note that the LCM is also basically a multiplication of unique prime factors, for lack of a better phrasing. Take 12 and 28, for example. One is 2*2*3, and the other is 2*2*7. So you end up with 2*2*3*7 as the LCM. The GCD, on the other hand, is prime factors in common, so I this example, 2*2, which are exactly the duplicate factors that get extracted from the LCM, but they must necissarily exist in the LCM.
Thank you for the help.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top