- #1
Math100
- 771
- 219
- Homework Statement
- If ## a ## is a positive integer and ## \sqrt[n]{a} ## is rational, then ## \sqrt[n]{a} ## must be an integer.
- Relevant Equations
- None.
Proof:
Suppose ## a ## is a positive integer and ## \sqrt[n]{a} ## is rational.
Then we have ## \sqrt[n]{a}=\frac{b}{c} ## for some ## b,c\in\mathbb{Z} ##
such that ## gcd(b, c)=1 ## where ## c\neq 0 ##.
Thus ## \sqrt[n]{a}=\frac{b}{c} ##
## (\sqrt[n]{a})^{n}=(\frac{b}{c})^n ##
## a=\frac{b^n}{c^n} ##,
which implies that ## ac^n=b^n ##.
This means ## c^{n}\mid b^{n} ##.
Since ## gcd(b, c)=1 ##, it follows that ## c=1 ##.
Thus ## \sqrt[n]{a}=\frac{b}{c} ##
## =\frac{b}{1} ##
## =b ##,
which implies that ## b ## is an integer.
Therefore, if ## a ## is a positive integer and ## \sqrt[n]{a} ## is rational,
then ## \sqrt[n]{a} ## must be an integer.
Suppose ## a ## is a positive integer and ## \sqrt[n]{a} ## is rational.
Then we have ## \sqrt[n]{a}=\frac{b}{c} ## for some ## b,c\in\mathbb{Z} ##
such that ## gcd(b, c)=1 ## where ## c\neq 0 ##.
Thus ## \sqrt[n]{a}=\frac{b}{c} ##
## (\sqrt[n]{a})^{n}=(\frac{b}{c})^n ##
## a=\frac{b^n}{c^n} ##,
which implies that ## ac^n=b^n ##.
This means ## c^{n}\mid b^{n} ##.
Since ## gcd(b, c)=1 ##, it follows that ## c=1 ##.
Thus ## \sqrt[n]{a}=\frac{b}{c} ##
## =\frac{b}{1} ##
## =b ##,
which implies that ## b ## is an integer.
Therefore, if ## a ## is a positive integer and ## \sqrt[n]{a} ## is rational,
then ## \sqrt[n]{a} ## must be an integer.