Oct 25, 2016 #1 hmhmherath Messages 1 Reaction score 0 Can anyone simplify any of these questions? Attachments 1.jpg 14.5 KB · Views: 86 2.jpg 14.4 KB · Views: 86
Oct 25, 2016 #2 Greg Gold Member MHB Messages 1,377 Reaction score 0 Hello hmhmherath and welcome to MHB! :D As per forum rules, in future please post at most two problems per thread. Let's take these one at a time. For the first one (problem 11), do you know the formula for the sum of a geometric series?
Hello hmhmherath and welcome to MHB! :D As per forum rules, in future please post at most two problems per thread. Let's take these one at a time. For the first one (problem 11), do you know the formula for the sum of a geometric series?
Oct 25, 2016 #3 Prove It Gold Member MHB Messages 1,434 Reaction score 20 hmhmherath said: Can anyone simplify any of these questions? $\displaystyle \begin{align*} \frac{1}{\cos^2{(x)}} &= 2\,\sqrt{3}\tan{(x)}- 2 \\ 1 &= 2\,\sqrt{3} \sin{(x)}\cos{(x)} - 2\cos^2{(x)} \\ 1 &= \sqrt{3}\sin{(2\,x)} - 1 - \cos{(2\,x)} \\ 2 + 2\cos{(2\,x)} &= \sqrt{3}\sin{(2\,x)} \\ 4 + 8\cos{(2\,x)} + 4\cos^2{(2\,x)} &= 3 \sin^2{(2\,x)} \\ 4 + 8\cos{(2\,x)} + 4\cos^2{(2\,x)} &= 3 - 3\cos^2{(2\,x)} \\ 7\cos^2{(2\,x)} + 8\cos{(2\,x)} + 1 &= 0 \end{align*}$ Now solve the resulting quadratic.
hmhmherath said: Can anyone simplify any of these questions? $\displaystyle \begin{align*} \frac{1}{\cos^2{(x)}} &= 2\,\sqrt{3}\tan{(x)}- 2 \\ 1 &= 2\,\sqrt{3} \sin{(x)}\cos{(x)} - 2\cos^2{(x)} \\ 1 &= \sqrt{3}\sin{(2\,x)} - 1 - \cos{(2\,x)} \\ 2 + 2\cos{(2\,x)} &= \sqrt{3}\sin{(2\,x)} \\ 4 + 8\cos{(2\,x)} + 4\cos^2{(2\,x)} &= 3 \sin^2{(2\,x)} \\ 4 + 8\cos{(2\,x)} + 4\cos^2{(2\,x)} &= 3 - 3\cos^2{(2\,x)} \\ 7\cos^2{(2\,x)} + 8\cos{(2\,x)} + 1 &= 0 \end{align*}$ Now solve the resulting quadratic.
Oct 25, 2016 #4 Greg Gold Member MHB Messages 1,377 Reaction score 0 $$\frac{1}{\cos^2\theta}=2\sqrt3\tan\theta-2$$ $$\sec^2\theta=2\sqrt3\tan\theta-2$$ $$\tan^2\theta+1=2\sqrt3\tan\theta-2$$ $$\tan^2\theta-2\sqrt3\tan\theta+3=0$$ Can you solve that quadratic for $\tan\theta$ ?
$$\frac{1}{\cos^2\theta}=2\sqrt3\tan\theta-2$$ $$\sec^2\theta=2\sqrt3\tan\theta-2$$ $$\tan^2\theta+1=2\sqrt3\tan\theta-2$$ $$\tan^2\theta-2\sqrt3\tan\theta+3=0$$ Can you solve that quadratic for $\tan\theta$ ?