MHB Can Complex Equations Be Solved More Efficiently?

Click For Summary
The discussion centers on solving the equation ${{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{x}}+{{\left( \dfrac{1-i}{\sqrt{2}} \right)}^{x}}=\sqrt{2}$ using Euler's formula. Participants confirm that the equation simplifies to $e^{ \pi i x/4} + e^{-\pi i x/4} = \sqrt{2}$, leading to the cosine function. The solutions identified include $x = \pm 1$ and other potential values, with a clarification that $x$ is intended to be real. There is confusion regarding the completeness of solutions and whether the problem needs to be reformulated. The conversation highlights the importance of accurately interpreting the equation's parameters.
Markov2
Messages
149
Reaction score
0
Solve ${{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{x}}+{{\left( \dfrac{1-i}{\sqrt{2}} \right)}^{x}}=\sqrt{2}.$

Is there a faster way to solve this?
 
Last edited:
Physics news on Phys.org
Markov said:
Solve ${{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{x}}+{{\left( \dfrac{1-i}{\sqrt{2}} \right)}^{x}}=\sqrt{2}.$

Is there a faster way to solve this?

You can check that $e^{\pi i/4} = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$ and $e^{-\pi i/4} = \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}$.

Therefore, the equation becomes,
$$ e^{ \pi i x/4} + e^{-\pi i x/4} = \sqrt{2} \implies \cos \left( \frac{\pi i x}{4} \right) = \frac{\sqrt{2}}{2} $$

Do you see how we got that?
 
Oh yes, you just used Euler's formula, so the solutions are $\dfrac{\pi }{4}ix = \dfrac{\pi }{4} \pm 2k\pi ,{\text{ }}k \in \mathbb{Z}$ and $\dfrac{\pi }{4}ix = \dfrac{{7\pi }}{4} \pm 2k\pi ,{\text{ }}k \in \mathbb{Z},$ are those correct?

Thanks for the help!
 
Markov said:
Oh yes, you just used Euler's formula, so the solutions are $\dfrac{\pi }{4}ix = \dfrac{\pi }{4} \pm 2k\pi ,{\text{ }}k \in \mathbb{Z}$ and $\dfrac{\pi }{4}ix = \dfrac{{7\pi }}{4} \pm 2k\pi ,{\text{ }}k \in \mathbb{Z},$ are those correct?

Thanks for the help!

Careful, those are not all of the solutions? Because $\cos -\frac{\pi}{4} = \frac{\sqrt{2}}{2}$ also!
 
Oh yes! So the we have these sets also: $ - \displaystyle\frac{\pi }{4}ix = \frac{\pi }{4} \pm 2k\pi ,{\text{ }}k \in \mathbb{Z},{\text{ }} - \frac{\pi }{4}ix = \frac{{7\pi }}{4} \pm 2k\pi ,{\text{ }}k \in \mathbb{Z},$
 
Markov said:
Solve ${{\left( \dfrac{1+i}{\sqrt{2}} \right)}^{x}}+{{\left( \dfrac{1-i}{\sqrt{2}} \right)}^{x}}=\sqrt{2}.$
I am a bit confused by the replies.
It clear that $x=\pm 1$ are solutions.
Was $x$ suppose to be complex also?

Moreover $\exp(i\theta)+\exp(-i\theta)=2\cos(\theta)$ not $2\cos(i\theta)$.
 
No, $x$ is supposed to be real, thanks for the catch Plato!
 
Markov said:
No, $x$ is supposed to be real, thanks for the catch Plato!
Then might look at $x=\pm 7,~\pm 9,~\pm 23,~\pm 25,\cdots$.
What is going on?
 
Mmm you mean would have to rephrase the condition for $x$ ?
 
  • #10
What are the solutions then? Do we have to reformule the problem?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K