MHB Can Cotangent Sums Exceed 2/3 in Acute Triangles with Perpendicular Medians?

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
In an acute triangle ABC with barycenter G, if the medians BG and CG are perpendicular, it is necessary to prove that the sum of the cotangents of angles B and C is at least 2/3. The discussion revolves around geometric properties and relationships between the angles and medians. Participants explore various mathematical approaches and theorems to establish this inequality. The focus remains on the implications of the perpendicularity condition on the cotangent values. Ultimately, the proof aims to confirm the stated inequality under the given conditions.
Albert1
Messages
1,221
Reaction score
0
point $G$ is the barycenter of an acute triangle $\triangle ABC$ ,if $\overline{BG}\perp \overline{CG}$
prove $cot\,\, B +cot\,\, C\geq \dfrac {2}{3}$
 
Last edited:
Mathematics news on Phys.org
Albert said:
point $G$ is the barycenter of an acute triangle $\triangle ABC$ ,if $\overline{BG}\perp \overline{CG}$
prove $cot\,\, B +cot\,\, C\geq \dfrac {2}{3}$
hint :
construct points $M,\,\,and \,\,H\,\, on \,\,\overline {BC}$
where $M$ is the midpoint of $\overline {BC}$ and $\overline{AH}\perp \overline {BC}$
 
Albert said:
hint :
construct points $M,\,\,and \,\,H\,\, on \,\,\overline {BC}$
where $M$ is the midpoint of $\overline {BC}$ and $\overline{AH}\perp \overline {BC}$
solution:

 

Attachments

  • Cot B +Cot C.jpg
    Cot B +Cot C.jpg
    17.4 KB · Views: 102
Last edited by a moderator:

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
4
Views
1K