MHB Can Cotangent Sums Exceed 2/3 in Acute Triangles with Perpendicular Medians?

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
In an acute triangle ABC with barycenter G, if the medians BG and CG are perpendicular, it is necessary to prove that the sum of the cotangents of angles B and C is at least 2/3. The discussion revolves around geometric properties and relationships between the angles and medians. Participants explore various mathematical approaches and theorems to establish this inequality. The focus remains on the implications of the perpendicularity condition on the cotangent values. Ultimately, the proof aims to confirm the stated inequality under the given conditions.
Albert1
Messages
1,221
Reaction score
0
point $G$ is the barycenter of an acute triangle $\triangle ABC$ ,if $\overline{BG}\perp \overline{CG}$
prove $cot\,\, B +cot\,\, C\geq \dfrac {2}{3}$
 
Last edited:
Mathematics news on Phys.org
Albert said:
point $G$ is the barycenter of an acute triangle $\triangle ABC$ ,if $\overline{BG}\perp \overline{CG}$
prove $cot\,\, B +cot\,\, C\geq \dfrac {2}{3}$
hint :
construct points $M,\,\,and \,\,H\,\, on \,\,\overline {BC}$
where $M$ is the midpoint of $\overline {BC}$ and $\overline{AH}\perp \overline {BC}$
 
Albert said:
hint :
construct points $M,\,\,and \,\,H\,\, on \,\,\overline {BC}$
where $M$ is the midpoint of $\overline {BC}$ and $\overline{AH}\perp \overline {BC}$
solution:

 

Attachments

  • Cot B +Cot C.jpg
    Cot B +Cot C.jpg
    17.4 KB · Views: 97
Last edited by a moderator:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top