Let $$X=\sum_{j=o\,\,j\,\,\text{even}}^{a} {a\choose j}(\sqrt{1982})^j$$, $$Y=\sum_{j=o\,\,j\,\,\text{odd}}^{a} {a\choose j}(\sqrt{1982})^j$$
Thus $X$ is the sum of the even-numbered terms in the expansion of $(\sqrt{1982}+1)^a$ and $Y$ is the sum of the odd-numbered terms in that expansion.
Note also that
$$(\sqrt{1982}-1)^a=\sum_{j=o}^{a} {a\choose j}(\sqrt{1982})^{a-j}(-1)^j=\begin{cases}Y-X \,\,\,\text{if}\,\,a\,\,\text{is odd}, & \\[3pt] X-Y \,\,\,\text{if}\,\,a\,\,\text{is even} \\ \end{cases}$$
Case 1: $a$ is odd. Let $k=X^2$
Then we have
$\begin{align*}\sqrt{k+1981^a}+\sqrt{k}&=\sqrt{X^2+(\sqrt{1982}-1)^a(\sqrt{1982}+1)^a}+X\\&=\sqrt{X^2+(Y-X)(X+Y)}+X\\&=\sqrt{X^2+Y^2-X^2}+X\\&=Y+X\\&=(\sqrt{1981}+1)^a \end{align*}$
Case 2: $a$ is even. Let $k=Y^2$
Then we have
$\begin{align*}\sqrt{k+1981^a}+\sqrt{k}&=\sqrt{Y^2+(X-Y)(X+Y)}+\sqrt{Y^2}\\&=\sqrt{X^2}+\sqrt{Y^2}\\&=(\sqrt{1981}+1)^a \end{align*}$
It's evident that $X^2$ is an integer, and $Y^2$ is an integer since $Y$ has the form $\sqrt{1982}M$, for some integer $M$, and this completes the proof.