MHB Can graph be used to solve inequalities without algebra?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Graph Inequality
AI Thread Summary
The discussion focuses on using the graph of the polynomial y = x^4 - 4x^3 + 6x^2 - 4x + 2 to solve the inequalities x^4 - 4x^3 + 6x^2 - 4x + 2 < 0 and x^4 - 4x^3 + 6x^2 - 4x + 2 > 0 without algebra. The graph indicates that it crosses the y-axis at one point and does not touch or cross the x-axis, suggesting that the polynomial is always positive. Therefore, the inequality x^4 - 4x^3 + 6x^2 - 4x + 2 > 0 is satisfied for all x, while x^4 - 4x^3 + 6x^2 - 4x + 2 < 0 has no solutions. The graph effectively illustrates the behavior of the polynomial in relation to the inequalities.
mathdad
Messages
1,280
Reaction score
0
How do we use the graph to solve a given inequality.

For example, say the graph of y = x^4 - 4x^3 + 6x^2 - 4x + 2 is given. The graph of y crosses the y-axis at one point. It does not touch or cross the x-axis. In what way can the picture, the graph help us solve either of the following inequalities given below?

A. x^4 - 4x^3 + 6x^2 - 4x + 2 < 0

B. x^4 - 4x^3 + 6x^2 - 4x + 2 > 0

Remember, use the graph to solve. Do not solve algebraically. How is this done?
 
Mathematics news on Phys.org
RTCNTC said:
How do we use the graph to solve a given inequality.

For example, say the graph of y = x^4 - 4x^3 + 6x^2 - 4x + 2 is given. The graph of y crosses the y-axis at one point. It does not touch or cross the x-axis. In what way can the picture, the graph help us solve either of the following inequalities given below?

A. x^4 - 4x^3 + 6x^2 - 4x + 2 < 0

B. x^4 - 4x^3 + 6x^2 - 4x + 2 > 0

Remember, use the graph to solve. Do not solve algebraically. How is this done?

Let's look at the graph as advised:

[DESMOS=-2.007008393275925,5.5746982450828035,-0.18167978042326505,2.4485740403429896]y=x^4-4x^3+6x^2-4x+2[/DESMOS]

Based on this, what values of $x$ appear to satisfy the two given inequalities?

By the way, do you recognize that:

$$y=(x-1)^4+1$$
 
The values of x? The graph does not touch the x-axis. It goes through one point on the line x = 0. I think 0 satisfies the inequality that is > 0 but does not satisfy the inequality where 0 is greater than the polynomial.
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
7
Views
1K
Replies
4
Views
1K
Replies
3
Views
2K
Back
Top