MHB Can (I-A)^{-1} Be Expressed as a Series When A^4 = 0?

  • Thread starter Thread starter delgeezee
  • Start date Start date
  • Tags Tags
    Polynomial Proof
delgeezee
Messages
12
Reaction score
0
Let A be a square matrix,

a) show that $$(I-A)^{-1}= I + A + A^2 + A^3 if A^4 = 0$$

b) show that $$(I-A)^{-1}= I + A + A^2+...+A^n $$ if $$
A^{n+1}= 0$$
 
Physics news on Phys.org
Re: polynomial problem proof?

B is the inverse of A iff AB = BA = I
so
try
(I -A )( I + A + A^2 + A^3) = I-A + A - A^2 + A^2 - A^3 + A^3 - A^4 = I - A^4 = I
 
Back
Top