I Can I visualize O(3) \ SO(3) in some way?

BerriesAndCream
Messages
7
Reaction score
2
Hello.

I know that a 3×3 orthogonal matrix with determinant = 1 (so a 3×3 special orthogonal matrix) is a rotation in 3D.
I was wondering if there is a 3×3 orthogonal matrix with determinant = –1 could be visualised in some way.

Thank you!
 
Physics news on Phys.org
BerriesAndCream said:
Hello.

I know that a 3×3 orthogonal matrix with determinant = 1 (so a 3×3 special orthogonal matrix) is a rotation in 3D.
I was wondering if there is a 3×3 orthogonal matrix with determinant = –1 could be visualised in some way.

Thank you!
It can be visualized as a rotation of reflection.
 
  • Like
Likes BerriesAndCream and pines-demon
_
BerriesAndCream said:
Hello.

I know that a 3×3 orthogonal matrix with determinant = 1 (so a 3×3 special orthogonal matrix) is a rotation in 3D.
I was wondering if there is a 3×3 orthogonal matrix with determinant = –1 could be visualised in some way.

Thank you!
SO(3) is the group of rotations in 3D (no complex numbers). O(3) is the group of rotations and reflections, you can decompose any matrix O(3) as the product of a matrix in SO(3) and a reflection matrix.
 
  • Like
Likes dextercioby and BerriesAndCream
thanks!
 
BerriesAndCream said:
Hello.

I know that a 3×3 orthogonal matrix with determinant = 1 (so a 3×3 special orthogonal matrix) is a rotation in 3D.
I was wondering if there is a 3×3 orthogonal matrix with determinant = –1 could be visualised in some way.

Thank you!
$$O(n) \cong SO(n) \rtimes O(1)$$
##O(1) \in \{1, -1\}## and ##\rtimes## is the semidirect product. So in some sense ##O(n)## can just be thought of like a direct product of ##SO(n)## and ##O(1)##. Geometrically as a manifold, Lie Group, ##O(n)## breaks into two components. ##SO(n)## is the connected component containing the Identity with ##det(A) = 1## and there is an isomorphic component that doesn't contain the identity with ##det(A) = -1##. So ##O(n)## can also be thought of as two copies of ##SO(n)##.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top