MHB Can Linear Integral Operators Be Combined to Prove a Trivial Inequality?

Click For Summary
The discussion centers on the properties of linear integral operators defined by equations involving continuous functions. The user seeks clarification on whether a specific notation for the operator K is acceptable and confirms the condition |b|.||L||<1. They aim to prove an inequality involving the operators K and L, leveraging the geometric series theorem for bounded linear operators. The conclusion reached is that the proposed inequality is correct, and the notation used is validated by other sources. The responses affirm the user's understanding and correctness of the approach.
sarrah1
Messages
55
Reaction score
0
I have a linear integral operator (related to integral equations)

$(Ky)(x)=\int_{a}^{b} \,k(x,s) y(s) ds$ and another one $(Ly)(x)=\int_{a}^{b} \,l(x,s) y(s) ds$ both are continuous

Before I proceed can I write:

$Ky=\int_{a}^{b} \,k(.,s) y(s) ds$ ? (I saw this notation in some books)

I also have $|b|.||L||<1 $ (b is a scalar)

Thus I need to prove that:

$||({(I-bL)}^{-1}.(K-L)||\le\frac{||K-L||}{1-|b|.||L||}$ #

I know it's correct since

$||{(I-bL)}^{-1}||\le \frac{1}{(1-|b|.||L||)} $ (from the geometric series theorem of bounded linear operators)

Thus

$||({(I-bL)}^{-1}.(K-L)||\le||{(I-bL)}^{-1}||.||K-L||$ (from the sub-multiplicative property)
$\le\frac{||K-L||}{1-|b|.||L||}$ #

I think it's correct of course and trivial.
is it?
many thanks
Sarrah
 
Physics news on Phys.org
sarrah said:
I have a linear integral operator (related to integral equations)

$(Ky)(x)=\int_{a}^{b} \,k(x,s) y(s) ds$ and another one $(Ly)(x)=\int_{a}^{b} \,l(x,s) y(s) ds$ both are continuous

Before I proceed can I write:

$Ky=\int_{a}^{b} \,k(.,s) y(s) ds$ ? (I saw this notation in some books)

I also have $|b|.||L||<1 $ (b is a scalar)

Thus I need to prove that:

$||({(I-bL)}^{-1}.(K-L)||\le\frac{||K-L||}{1-|b|.||L||}$ #

I know it's correct since

$||{(I-bL)}^{-1}||\le \frac{1}{(1-|b|.||L||)} $ (from the geometric series theorem of bounded linear operators)

Thus

$||({(I-bL)}^{-1}.(K-L)||\le||{(I-bL)}^{-1}||.||K-L||$ (from the sub-multiplicative property)
$\le\frac{||K-L||}{1-|b|.||L||}$ #

I think it's correct of course and trivial.
is it?
many thanks
Sarrah
The answers to your questions are Yes and Yes. :)
 
thank you very much Oplag
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K