Can $\mathbb{Z}[\sqrt{-3}]$ Be Proven as a Principal Ideal Domain?

  • Context: MHB 
  • Thread starter Thread starter javi410
  • Start date Start date
  • Tags Tags
    Form Primes
Click For Summary
SUMMARY

The discussion centers on the proof that a prime \( p \neq 3 \) can be expressed as \( p = x^2 + 3y^2 \) if \( p \equiv 1 \pmod{3} \) within the ring \( \mathbb{Z}[\sqrt{-3}] \). A participant proposes that since \(-3\) is a quadratic residue mod \( p \), the ideal \((p)\) divides \((x^2 + 3)\), leading to the conclusion that \((p)\) is not prime in \( \mathbb{Z}[\sqrt{-3}] \). However, another participant definitively states that \( \mathbb{Z}[\sqrt{-3}] \) is not a principal ideal domain (PID), providing the example of \( 4 = (1 + \sqrt{-3})(1 - \sqrt{-3}) \) to illustrate that \( 2 \) does not divide either factor, confirming the lack of unique factorization.

PREREQUISITES
  • Understanding of quadratic residues and their properties.
  • Familiarity with ideals in ring theory, specifically in the context of algebraic integers.
  • Knowledge of principal ideal domains (PIDs) and unique factorization domains (UFDs).
  • Basic concepts of modular arithmetic, particularly congruences.
NEXT STEPS
  • Study the properties of quadratic residues in number theory.
  • Learn about the structure of ideals in rings, focusing on non-principal ideals.
  • Investigate the criteria for a ring to be classified as a principal ideal domain.
  • Explore examples of unique factorization domains and their relationship to PIDs.
USEFUL FOR

Mathematicians, number theorists, and students studying algebraic number theory, particularly those interested in the properties of rings and ideals.

javi410
Messages
1
Reaction score
0
Hi,
Im trying to prove that a prime $p\neq 3$ is of the form $p=x^2 + 3y^2$ if $p \equiv 1 \pmod{3}$.

I have think in a prove as follows:
As we know that $-3$ is a quadratic residue mod p, we know that the ideal $(p)$ must divide $(x^2 + 3) = (x + \sqrt{-3})(x - \sqrt{-3})$ in the ring $\mathbb{Z}[\sqrt{-3}]$.
$p$ don't divide any of the factors so it can not be prime in $\mathbb{Z}[\sqrt{-3}]$, so there are ideals $I,J$ of $\mathbb{Z}[\sqrt{-3}]$ such that
\[
(p) = I\cdot J
\]
and, if we prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID, we have the result as we can take elements $u,v$ of $I$ and $J$ such that $u\cdot v$ has norm $p^2$, therefore the norm of $u = a^2 + b\sqrt{-3}$ is $p =a^2 + 3b^2$.

The problem is that I don't know how to prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID.

Thanks!
 
Physics news on Phys.org
javi410 said:
Hi,
Im trying to prove that a prime $p\neq 3$ is of the form $p=x^2 + 3y^2$ if $p \equiv 1 \pmod{3}$.

I have think in a prove as follows:
As we know that $-3$ is a quadratic residue mod p, we know that the ideal $(p)$ must divide $(x^2 + 3) = (x + \sqrt{-3})(x - \sqrt{-3})$ in the ring $\mathbb{Z}[\sqrt{-3}]$.
$p$ don't divide any of the factors so it can not be prime in $\mathbb{Z}[\sqrt{-3}]$, so there are ideals $I,J$ of $\mathbb{Z}[\sqrt{-3}]$ such that
\[
(p) = I\cdot J
\]
and, if we prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID, we have the result as we can take elements $u,v$ of $I$ and $J$ such that $u\cdot v$ has norm $p^2$, therefore the norm of $u = a^2 + b\sqrt{-3}$ is $p =a^2 + 3b^2$.

The problem is that I don't know how to prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID.

Thanks!

Wellcome on MHB javi410!...

Setting $p= 3 n + a$, where it must be $a=1$ or $a=2$, You have...

$\displaystyle x^{2} + 3\ y^{2} = 3\ n + a \implies x^{2} \equiv a\ \text{mod}\ 3\ (1)$

Now the equation (1) has solution only if $a = 1$...

Kind regards

$\chi$ $\sigma$
 
javi410 said:
The problem is that I don't know how to prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID.

You won't be, because $\Bbb Z[\sqrt{-3}]$ is not a principal ideal domain.

Consider $4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$. $2$ divides $4$, but doesn't divide either of $1 \pm \sqrt{-3}$, so it's not a prime. Thus, it's not an unique factorization domain, so cannot possibly be a PID either.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
975
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
2K