MHB Can $\mathbb{Z}[\sqrt{-3}]$ Be Proven as a Principal Ideal Domain?

  • Thread starter Thread starter javi410
  • Start date Start date
  • Tags Tags
    Form Primes
javi410
Messages
1
Reaction score
0
Hi,
Im trying to prove that a prime $p\neq 3$ is of the form $p=x^2 + 3y^2$ if $p \equiv 1 \pmod{3}$.

I have think in a prove as follows:
As we know that $-3$ is a quadratic residue mod p, we know that the ideal $(p)$ must divide $(x^2 + 3) = (x + \sqrt{-3})(x - \sqrt{-3})$ in the ring $\mathbb{Z}[\sqrt{-3}]$.
$p$ don't divide any of the factors so it can not be prime in $\mathbb{Z}[\sqrt{-3}]$, so there are ideals $I,J$ of $\mathbb{Z}[\sqrt{-3}]$ such that
\[
(p) = I\cdot J
\]
and, if we prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID, we have the result as we can take elements $u,v$ of $I$ and $J$ such that $u\cdot v$ has norm $p^2$, therefore the norm of $u = a^2 + b\sqrt{-3}$ is $p =a^2 + 3b^2$.

The problem is that I don't know how to prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID.

Thanks!
 
Mathematics news on Phys.org
javi410 said:
Hi,
Im trying to prove that a prime $p\neq 3$ is of the form $p=x^2 + 3y^2$ if $p \equiv 1 \pmod{3}$.

I have think in a prove as follows:
As we know that $-3$ is a quadratic residue mod p, we know that the ideal $(p)$ must divide $(x^2 + 3) = (x + \sqrt{-3})(x - \sqrt{-3})$ in the ring $\mathbb{Z}[\sqrt{-3}]$.
$p$ don't divide any of the factors so it can not be prime in $\mathbb{Z}[\sqrt{-3}]$, so there are ideals $I,J$ of $\mathbb{Z}[\sqrt{-3}]$ such that
\[
(p) = I\cdot J
\]
and, if we prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID, we have the result as we can take elements $u,v$ of $I$ and $J$ such that $u\cdot v$ has norm $p^2$, therefore the norm of $u = a^2 + b\sqrt{-3}$ is $p =a^2 + 3b^2$.

The problem is that I don't know how to prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID.

Thanks!

Wellcome on MHB javi410!...

Setting $p= 3 n + a$, where it must be $a=1$ or $a=2$, You have...

$\displaystyle x^{2} + 3\ y^{2} = 3\ n + a \implies x^{2} \equiv a\ \text{mod}\ 3\ (1)$

Now the equation (1) has solution only if $a = 1$...

Kind regards

$\chi$ $\sigma$
 
javi410 said:
The problem is that I don't know how to prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID.

You won't be, because $\Bbb Z[\sqrt{-3}]$ is not a principal ideal domain.

Consider $4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$. $2$ divides $4$, but doesn't divide either of $1 \pm \sqrt{-3}$, so it's not a prime. Thus, it's not an unique factorization domain, so cannot possibly be a PID either.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top