MHB Can $\mathbb{Z}[\sqrt{-3}]$ Be Proven as a Principal Ideal Domain?

  • Thread starter Thread starter javi410
  • Start date Start date
  • Tags Tags
    Form Primes
AI Thread Summary
The discussion centers on proving that a prime \( p \neq 3 \) can be expressed as \( p = x^2 + 3y^2 \) if \( p \equiv 1 \pmod{3} \). The initial argument hinges on the fact that since \(-3\) is a quadratic residue modulo \( p \), the ideal \((p)\) in \(\mathbb{Z}[\sqrt{-3}]\) must factor into two ideals. However, the main challenge is proving that \(\mathbb{Z}[\sqrt{-3}]\) is a principal ideal domain (PID). It is concluded that \(\mathbb{Z}[\sqrt{-3}]\) is not a PID because it fails to be a unique factorization domain, as demonstrated by the factorization of \(4\) into non-prime elements. Thus, the original claim cannot be established.
javi410
Messages
1
Reaction score
0
Hi,
Im trying to prove that a prime $p\neq 3$ is of the form $p=x^2 + 3y^2$ if $p \equiv 1 \pmod{3}$.

I have think in a prove as follows:
As we know that $-3$ is a quadratic residue mod p, we know that the ideal $(p)$ must divide $(x^2 + 3) = (x + \sqrt{-3})(x - \sqrt{-3})$ in the ring $\mathbb{Z}[\sqrt{-3}]$.
$p$ don't divide any of the factors so it can not be prime in $\mathbb{Z}[\sqrt{-3}]$, so there are ideals $I,J$ of $\mathbb{Z}[\sqrt{-3}]$ such that
\[
(p) = I\cdot J
\]
and, if we prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID, we have the result as we can take elements $u,v$ of $I$ and $J$ such that $u\cdot v$ has norm $p^2$, therefore the norm of $u = a^2 + b\sqrt{-3}$ is $p =a^2 + 3b^2$.

The problem is that I don't know how to prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID.

Thanks!
 
Mathematics news on Phys.org
javi410 said:
Hi,
Im trying to prove that a prime $p\neq 3$ is of the form $p=x^2 + 3y^2$ if $p \equiv 1 \pmod{3}$.

I have think in a prove as follows:
As we know that $-3$ is a quadratic residue mod p, we know that the ideal $(p)$ must divide $(x^2 + 3) = (x + \sqrt{-3})(x - \sqrt{-3})$ in the ring $\mathbb{Z}[\sqrt{-3}]$.
$p$ don't divide any of the factors so it can not be prime in $\mathbb{Z}[\sqrt{-3}]$, so there are ideals $I,J$ of $\mathbb{Z}[\sqrt{-3}]$ such that
\[
(p) = I\cdot J
\]
and, if we prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID, we have the result as we can take elements $u,v$ of $I$ and $J$ such that $u\cdot v$ has norm $p^2$, therefore the norm of $u = a^2 + b\sqrt{-3}$ is $p =a^2 + 3b^2$.

The problem is that I don't know how to prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID.

Thanks!

Wellcome on MHB javi410!...

Setting $p= 3 n + a$, where it must be $a=1$ or $a=2$, You have...

$\displaystyle x^{2} + 3\ y^{2} = 3\ n + a \implies x^{2} \equiv a\ \text{mod}\ 3\ (1)$

Now the equation (1) has solution only if $a = 1$...

Kind regards

$\chi$ $\sigma$
 
javi410 said:
The problem is that I don't know how to prove that $\mathbb{Z}[\sqrt{-3}]$ is a PID.

You won't be, because $\Bbb Z[\sqrt{-3}]$ is not a principal ideal domain.

Consider $4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$. $2$ divides $4$, but doesn't divide either of $1 \pm \sqrt{-3}$, so it's not a prime. Thus, it's not an unique factorization domain, so cannot possibly be a PID either.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top