Clearly $ab+bc+ca>6$, so if we rewrite the given equation as follows:
$ab+bc+ca-1=5\sqrt{a^2+b^2+c^2}$
$(ab+bc+ca-1)^2=25(a^2+b^2+c^2)$
And we let $ab+bc+ca=5k+1$ where $k>0$ and $k$ is an integer so that $a^2+b^2+c^2=k^2$, we then get:
$\begin{align*}(a+b+c)^2&=a^2+b^2+c^2+2(ab+bc+ca)\\&=k^2+2(5k+1)\\&=(k+5)^2-23\end{align*}$
Therefore
$(k+5)^2-(a+b+c)^2=23$
$(k+5-a-b-c)(k+5+a+b+c)=1(23)$
Since $a,\,b,\,c,\,k$ are positive integers, it must be
$k+5-a-b-c=1$ and $k+5+a+b+c=23$
Summing up the two equations gives $k=7$.
So $a+b+c=11$ and $ab+bc+ca=36$.
Suppose WLOG, that $c>b>a$, clearly $a\le 3$. We there are three cases to consider:
$a=1$ gives $b+c=10$, $bc=26$ and this has no solution.
$a=2$ gives $b+c=9$, $bc=18$ so $b=3,\,c=6$.
$a=3$ gives $b+c=8$, $bc=12$ and this has no solution.
We can conclude by now that the solutions are hence
$(a,\,b,\,c)=(2,\,3,\,6),\,(2,\,6,\,3),\,(3,\,2,\,6),\,(3,\,6,\,2),\,(6,\,2,\,3),\,(6,\,3,\,2)$