Can Positive Integers Satisfy the Equation $ab+bc+ca=1+5\sqrt{a^2+b^2+c^2}$?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers Positive
Click For Summary
SUMMARY

The equation $ab+bc+ca=1+5\sqrt{a^2+b^2+c^2}$ can be solved for positive integers, yielding the solution set $\{2, 3, 6\}$ in any order. By defining $u = a+b+c$ and $v = bc + ca + ab$, the equation simplifies to $(v+24)^2 - (5u)^2 = 575$. Factoring this leads to the conclusion that $u = 11$ and $v = 36$, which restricts the values of $a, b, c$ to combinations that satisfy $a^2+b^2+c^2 = 49$. The only valid combination is $\{2, 3, 6\}$.

PREREQUISITES
  • Understanding of algebraic manipulation and equations
  • Familiarity with the concepts of sums and products of integers
  • Knowledge of square roots and their properties
  • Ability to factor differences of squares
NEXT STEPS
  • Study the properties of symmetric sums in polynomial equations
  • Explore the method of completing the square in algebra
  • Learn about integer factorization techniques and their applications
  • Investigate other equations involving square roots and integer solutions
USEFUL FOR

Mathematicians, algebra students, and anyone interested in solving integer equations and exploring number theory.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve for positive integers the equation $ab+bc+ca=1+5\sqrt{a^2+b^2+c^2}$.
 
Mathematics news on Phys.org
anemone said:
Solve for positive integers the equation $ab+bc+ca=1+5\sqrt{a^2+b^2+c^2}$.
[sp]Let $u = a+b+c$ and $v = bc + ca + ab$. Then $u^2 = (a+b+c)^2 = a^2 + b^2 + c^2 + 2(bc + ca + ab) = a^2 + b^2 + c^2 + 2v.$ Therefore $a^2 + b^2 + c^2 = u^2 - 2v$.

So the given equation tells us that $v-1 = 5\sqrt{u^2 - 2v}$. Thus $(v-1)^2 = 25(u^2 - 2v)$, which gives $v^2 + 48v + 1 = 25u^2.$

Complete the square to get $(v+24)^2 - 575 = (5u)^2,$ or $(v+24)^2 - (5u)^2 = 575.$ Factorise this as the difference of two squares: $(v+24 +5u)(v+24 - 5u) = 575.$

So $v+24 +5u = p$ and $v+24 -5u = q$, where $p$ and $q$ are integers whose product is $575 = 5^2\cdot23.$ Subtract the second equation from the first to get $10u = p-q.$ Thus $p-q$ must be a multiple of $10$. The only way that can happen with $pq = 5^2\cdot23$ is if $p = 5\cdot23$ and $q=5$. Thus $p-q = 10\cdot11$ and so $u = 11$. The corresponding value of $v$ is $v=36$.

Therefore $a+b+c = 11$, and $a^2+b^2+c^2= u^2 - 2v = 49$. That can only happen if one of $a,b,c$ is odd and the other two are even. This cuts down the possible values for the triple $\{a,b,c\}$ to a very few possible cases to check. The only one for which $a^2+b^2+c^2 = 49$ is $\{3,2,6\}$, and that does indeed provide a solution to the problem.

Conclusion: the numbers $a,b,c$ are $2,3,6$ (in any order).[/sp]
 
Last edited:
Thanks Opalg for your neat solution!

Here is another quite similar approach with Opalg that is proposed by other:

Clearly $ab+bc+ca>6$, so if we rewrite the given equation as follows:

$ab+bc+ca-1=5\sqrt{a^2+b^2+c^2}$

$(ab+bc+ca-1)^2=25(a^2+b^2+c^2)$

And we let $ab+bc+ca=5k+1$ where $k>0$ and $k$ is an integer so that $a^2+b^2+c^2=k^2$, we then get:

$\begin{align*}(a+b+c)^2&=a^2+b^2+c^2+2(ab+bc+ca)\\&=k^2+2(5k+1)\\&=(k+5)^2-23\end{align*}$

Therefore

$(k+5)^2-(a+b+c)^2=23$

$(k+5-a-b-c)(k+5+a+b+c)=1(23)$

Since $a,\,b,\,c,\,k$ are positive integers, it must be

$k+5-a-b-c=1$ and $k+5+a+b+c=23$

Summing up the two equations gives $k=7$.

So $a+b+c=11$ and $ab+bc+ca=36$.

Suppose WLOG, that $c>b>a$, clearly $a\le 3$. We there are three cases to consider:

$a=1$ gives $b+c=10$, $bc=26$ and this has no solution.

$a=2$ gives $b+c=9$, $bc=18$ so $b=3,\,c=6$.

$a=3$ gives $b+c=8$, $bc=12$ and this has no solution.

We can conclude by now that the solutions are hence

$(a,\,b,\,c)=(2,\,3,\,6),\,(2,\,6,\,3),\,(3,\,2,\,6),\,(3,\,6,\,2),\,(6,\,2,\,3),\,(6,\,3,\,2)$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K