Can Relativistic Effects Alter Thermodynamic Processes in Experiments?

Click For Summary

Discussion Overview

The discussion revolves around the potential effects of relativistic speeds on thermodynamic processes, particularly focusing on diffusion, heat transfer, and the behavior of systems in motion. Participants explore theoretical implications and propose experimental setups to investigate these effects, while also referencing existing experiments in special relativity.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants reference established experiments like the Hafele-Keating and Ives-Stillwell experiments to illustrate relativistic effects on atomic and subatomic particles.
  • There is a proposal to investigate whether diffusion occurs more slowly in a container moving at relativistic speeds, though the feasibility of such an experiment is questioned.
  • One participant suggests a thought experiment involving the Carnot cycle and heat transfer between two bodies in motion, hypothesizing that results may differ based on the frame of reference.
  • Another participant introduces the idea of relativistic quantum chemistry, noting that relativistic effects significantly influence the behavior of materials like lead compared to tin.
  • Concerns are raised about the practicality of using simple thermodynamic processes as measures of relativistic effects compared to more precise methods like atomic clocks.
  • There is a discussion about the implications of time dilation on various measuring processes, suggesting that if one process appears to run slow, all must do so uniformly to avoid detecting absolute speed.

Areas of Agreement / Disagreement

Participants express differing views on the relevance and feasibility of proposed experiments, with some questioning the significance of studying diffusion at relativistic speeds. The discussion remains unresolved regarding the intrinsic thermodynamic behavior at these speeds and the appropriate methods to investigate them.

Contextual Notes

Participants note the complexity and lack of consensus in the theoretical treatment of relativistic thermodynamics, highlighting that existing theories may not adequately address the intrinsic behavior of thermodynamic processes at relativistic velocities.

bwana
Messages
82
Reaction score
2
TL;DR
is there evidence of relativistic change in processes occurring at the level of large populations of particles
In most experiments of SR, we look at atomic and subatomic particles or the frequency of EM radiation.

The Haefele-Keating experiment looked at the resonance of cesium atoms stimulated by a certain EM frequency
https://en.wikipedia.org/wiki/Hafele–Keating_experiment

The Ives-Stillwell experiment looked at Doppler shift
https://en.wikipedia.org/wiki/Ives–Stilwell_experiment

The lifetimes of muons and other particles were investigated in other experiments.
https://en.wikipedia.org/wiki/Experimental_testing_of_time_dilation

But consider the mundane process of diffusion. Does diffusion occur more slowly in a container moving close to relativistic velocity? I guess doing this experiment is technically very difficult. But haven't we developed tools improved enough to allow this?

Or consider the Carnot cycle. Or perhaps something even more fundamental- heat transfer between two bodies. A simple experiment would consist of an insulated (adiabatic) container. In this container are two separate containers of water separated by a gap of air. Each container has a thermocouple to measure its temperature. One container is then heated to a specific temperature. The containers are brought into contact and the time it takes for the temperature equilibration is measured and a curve is generated. If this experiment is done on an airplane (like the Hafele–Keating_experiment) we should expect different rates of cooling compared to the ground experiment as well as the direction of flight compared to the ground (as in the Hafele–Keating_experiment)

But the theory of relativistic thermodynamics is still controversial
https://www.nature.com/articles/s41598-017-17526-4
The initial treatment by Planck and Einstein suggested

\begin{array}{ccc}T^{\prime} =\frac{T}{\gamma }\,, & S^{\prime} =S, & p^{\prime} =p\,,\end{array}where γ = (1 − (w/c))−1/2 is the Lorentz factor, c is the speed of light, and primed quantities correspond to the thermodynamic measurements in I’. These results mean that a body should appear cooler for a moving observer, but both entropy and pressure are relativistic invariants.

But even to this day, there is no consensus about how to theoretically treat relativistic thermodynamics. Even when the theory is written down, I can make no sense of it.
https://arxiv.org/abs/gr-qc/9803007
https://link.springer.com/article/10.1007/s10701-020-00393-x

https://www.researchgate.net/post/Why-is-relativistic-thermodynamics-not-included-in-the-general-physics-textbooks-and-special-theory-of-relativity-textbooks

But most of these treatises look at the question trying to understand whether a body “looks hotter or colder” from the point of view of the other. My question has more to do with the intrinsic thermodynamic behavior of a process at relativistic speeds.

But really, the theory has to fit the data. So where are the data?
 
Physics news on Phys.org
This is interesting, but maybe not what you’re looking for. https://en.m.wikipedia.org/wiki/Relativistic_quantum_chemistryThe most interesting to me is the section on lead.

“Without relativity, lead would be expected to behave much like tin, so tin–acid batteries should work just as well as the lead–acid batteries commonly used in cars. However, calculations show that about 10 V of the 12 V produced by a 6-cell lead–acid battery arises purely from relativistic effects, explaining why tin–acid batteries do not work.”The citation is number 14.
 
  • Like
Likes   Reactions: vanhees71
bwana said:
Does diffusion occur more slowly in a container moving close to relativistic velocity? I guess doing this experiment is technically very difficult. But haven't we developed tools improved enough to allow this?
Don’t guess when you can calculate.

What is a reasonable mass for a container in which we might observe diffusion? Maybe 100 grams, .1 kg.
What is the maximum acceleration it can tolerate without breaking up? Something like 100g, which we is within the realm of possibility for a railgun.
So we’re going to use a railgun to accelerate a .1kg object at 100g until it reaches some relativistic velocity, something like .8c or thereabouts.

How long of a railgun do we need?
How much energy is required (assume 100% efficiency for simplicity)?
 
I'm a little confused as to what about diffusion might be interesting. How about studying the internal combustion engine relativistic speeds?
And why would you seriously propose substituting the cooling of a tank of water for a precision cesium clock as a measure of time. Better you use an hourglass.
As the OP suspects, none of this makes much sense.
 
  • Like
Likes   Reactions: Grasshopper
bwana said:
My question has more to do with the intrinsic thermodynamic behavior of a process at relativistic speeds.
It's easy to show that if one time measuring process appears to "run slow" so must all others and by the same factor, or else you can detect your absolute speed by comparing tick rates of two clocks. In other words, your question boils down to a test of the principle of relativity, of which there are many. See the experimental basis of special relativity FAQ linked in a sticky post at the top of the forum.
 
Last edited:
  • Like
Likes   Reactions: Twigg and hutchphd

Similar threads

  • · Replies 9 ·
Replies
9
Views
318
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 152 ·
6
Replies
152
Views
11K
  • · Replies 24 ·
Replies
24
Views
10K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K